Exams grades
Last updated:
Tuesday, 16Apr2019 16:53:13 EDT
Toggle the grades »
Max points: M1  100, M2  100,
ID  M1  M2  % 
xxx9602  92  50  71 
xxx5339  99  100  100 
xxx8443  99  102  100 
xxx1108  93  94  94 
xxx2055  98  101  100 
xxx4605  98  102  100 
xxx3512  99  102  100 
xxx6535  78  100  89 
xxx3064  90  101  96 
xxx3085  98  100  99 
xxx5876  99  102  100 
xxx9950  91  72  82 
xxx1446  99  100  100 
xxx8401  100  102  100 
xxx5038  100  102  100 
xxx3765  97  102  100 
xxx4774  99  92  96 
xxx7432  94  102  98 
xxx1376  99  100  100 
xxx1993  99  101  100 
xxx4543  87  72  80 
xxx4789  97  102  100 
xxx5401  92  85  88 
xxx3620  93  92  92 
xxx5109  94  82  88 
xxx1622  68   34 
xxx2335  101  101  100 
xxx0365  97  100  98 
Final exam
Last updated:
Tuesday, 07May2019 20:05:42 EDT
Toggle the exam information »

On: Thursday, May 9, 2019, 1pm3pm, MONT 110

"Open notes", computer is required

The programming part of the final exam will be released 24 hours before
the inclass part, on Wednesday, May 8, 1pm
Final exam
(pdf, 98K),
last updated
May 09, 2019

Review sessions: Tue, May 7, 7pm8pm, MONT 214

Practice test
(pdf, 91K),
last updated
April 28, 2019

Practice test solutions
(pdf, 584K),
last updated
May 07, 2019

Practice test matlab code
last updated
May 07, 2019
Midterm 2
Last updated:
Monday, 01Apr2019 19:04:35 EDT
Toggle the exam information »

On: Tuesday, April 2, 2019; regular class time/place

"Open notes", computer is required

Covers Power methods for finding eigenvalues and eigenvectors,
QR factorization and QR algorithm, Linear least squares,
and the material from the homework assignments 45.

Review sessions: Monday, April 1, 7pm8pm, MONT214

Practice test
(pdf, 64K),
last updated
April 02, 2019

Practice test solutions
(pdf, 558K),
last updated
April 01, 2019
Midterm 1
Last updated:
Wednesday, 27Feb2019 08:36:02 EST
Toggle the exam information »

On:
Tuesday, February 26, Thursday, February 28, 2019; regular class time/place

"Open notes", computer is required

Covers basics of Matlab programming,
Discrete Fourier transform,
Jacobi, GaussSeidel, and SOR iterative methods,
matrix and vector norms, eigenvalues and eigenectors, and
the material from the homework assignments 13.

Review sessions: Wed February 27, 7PM, MONT214

Practice test
(pdf, 64K),
last updated
February 25, 2019

Practice test solutions
(pdf, 751K),
last updated
February 26, 2019