PHYS 3102
Spring semester 2020
  • Syllabus
  • Calendar
    • HW01
    • HW02
    • HW03
    • HW04
    • HW05
    • HW06
    • Homework guidelines
    • Homework grades
  • Downloads
    • Midterm 1
    • Midterm 2
    • Midterm 3
    • Exam grades

Continuum mechanics online

Lecture notes

  • The Feynman Lectures on Physics,
    Chapter 38. Elasticity
    Chapter 39. Elastic Materials
    Chapter 40. The Flow of Dry Water
    Chapter 41. The Flow of Wet Water

  • Predrag Cvitanovic (Georgia Institute of Technology),
    Introduction to continuum physics

  • Michael P. Brenner (MIT/Harvard),
    Classical Physics Through the Work of G. I. Taylor , 2000

  • Romain Teyssier (University of Zürich),
    Continuum mechanics , 2013

  • Marc Spiegelman (Columbia University),
    Myths and Methods in Modeling , 2004 (WaybackMachine link)

  • Panayiotis Papadopoulos (University of California, Berkeley),
    Introduction to Continuum Mechanics , 2017

  • Rohan Abeyaratne (MIT),
    Lecture Notes on The Mechanics of Elastic Solids , 2014

  • David J. Raymond (New Mexico Tech),
    Introduction to Continuum Mechanics , 2015

  • Chiang C. Mei (MIT),
    Advanced Fluid Dynamics , 2014

  • Gregory Falkovich (Weizmann Institute),
    Fluid Mechanics - A short course for physicists , 2009

  • Stephen Childress (New York University),
    Fluid Dynamics , 2007

Film collections

  • Fluid mechanics films , 1961-1969

    A collection 39 films and accompanying lecture notes

Books

  • L.D. Landau and E.M. Lifshitz, Theory of Elasticity

  • L.D. Landau and E.M. Lifshitz, Fluid Mechanics

  • Horace Lamb, Hydrodynamics

  • A. E. H. Love, A treatise on the mathematical theory of elasticity

  • B. Lautrup, Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World

  • Richard Fitzpatrick (University of Texas Austin),
    Fluid mechanics , 2016

  • Simon J. A. Malham (Heriot-Watt University), Introductory fluid mechanics , 2014

  • Allan F. Bower (Brown University), Applied Mechanics of Solids , 2012

  • Ray M. Bowen (Texas A&M University), Introduction to Continuum Mechanics for Engineers , 2008

  • Alexander J. Smits (Princeton University), A Physical Introduction to Fluid Mechanics , 2019

    A Physical Introduction to Fluid Mechanics: Problems and Examples , 2018

Lorem Ipsum

Etiam porta sem malesuada magna mollis euismod rendered as bold text. Cras mattis consectetur purus sit amet fermentum le syndrome du clandestin. A clear, authoritative judicial holding on the meaning of a particular

\[ \begin{align*} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) & = 0\\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) & = -\nabla p + \mathbf{F} \\ + \mu \, \nabla^2 \mathbf{u} \, + \, & \left(\xi + \frac{\mu}{3} \right) \, \nabla (\nabla \cdot \mathbf {u}) \end{align*} \]

provision should not be cast in doubt and subjected to challenge whenever a related though not utterly inconsistent provision is adopted in the same statute or even in an affiliated statute, the two authors wrote

Resources

  1. Continuum mechanics
  2. Classical mechanics
  3. Numerical computing
  4. Dimensional analysis
  5. Mathematical methods
  6. Latex
  7. Julia

Course Archives

  1. Mechanics I, Spring 2019
  2. Mechanics II, Spring 2014
  3. Math Methods, Spring 2017
  4. Computational Physics, Fall 2016

Links

  1. UConn AnyWare
  2. UConn GitLab
  3. UConn VPN
  4. UConn large file sharing
  5. UConn software
  6. Babbidge Library (free) laptop rentals

General

  1. Academic Calendar, Spring 2020
  2. UConn Physics Department
  3. Dean of students
  4. 2020 Calendar of Religious Holidays
  5. Educational Rights and Privacy
  6. Office of the Provost's policies links
  7. How to E-mail Your Professor

Designed by Thomas Park.   Code released under the MIT License.   Based on Bootstrap.   Icons from Font Awesome.   Web fonts from Google.