ACADEMIC CALENDAR

MECHANICS II

spring semester 2020

http://www.phys.uconn.edu/~rozman/Courses/P3102_20S/

Last modified: April 22, 2020

The section and the page numbers below refer to the following editions of the course textbook: B. Lautrup, *Physics of Continuous Matter, Exotic and Everyday Phenomena in the Macroscopic World*, 2nd ed., CRC Press 2011

Monday	Wednesday
Jan 20th	Jan 22nd Lecture 1
MLK Day – No classes	Course logistics. Introduction to dimensional analysis.
Jan 27th Lecture 2	Jan 29th Lecture 3
Stress. Divergence theorem. Ch. 6.2–6.4, pp. 99–105.	Mechanical equilibrium. Cauchy's equations.
	Homework 1 assigned: due 2/5/2020
Feb 3rd Lecture 4	Feb 5th Lecture 5
Strain. Ch. 7.1–7.2, pp.109–115.	Physical meaning of the strain tensor. Ch. 7.3, pp.116–118.
	Homework 2 assigned: due 2/12/2020
	11011e.work 2 dostfiled. ddc 27 12, 2020
Feb 10th Lecture 6	Feb 12th Lecture 7
Hooke's law. Ch. 8.1–8.2, pp. 125–130.	Hooke's law, II. Basic elastostatics.
	Homework 3 assigned: due 2/19/2020
Feb 17th Lecture 8	Feb 19th Lecture 9
Basic elastostatics, II. Ch. 9.1–9.2, pp. 140–145.	Basic elastostatics, III.
Feb 24thLecture 10	Feb 26th
Basic elastostatics, IV. Radial deformation of a spherical	
body. Ch. 9.5, pp. 153–156.	Midterm I
Mar 2nd Lecture 11	Mar 4th Lecture 12
Bending a beam. Euler-Bernoulli law. Ch. 9.3, pp. 146–149.	Large deflections of beams. Ch. 10.3, pp. 169-171.
	Homework 4 assigned: due 3/11/2020

Monday	Wednesday
Mar 9th Lecture 13	Mar 11th Lecture 14
Fluid dynamics: Conservation of mass. Ch. 12.3,	Review
pp. 194–197.	
Mar 16th	Mar 18th
Spring recess – No classes	Spring recess – No classes
Mar 23rd Locture 15	Mar 25th Lacture 16
Continuum dynamics: Ch 12.4 pp 198 199	Ideal Flow: Fuler equation Ch 13.1 pp 207 211:
Continuum uynamics. Cn. 12.4, pp. 196–199.	Bernoulli's theorem Ch 13.2, pp. 210–214
	bennouni o incoreni. en. 13.2, pp. 210-211.
Mar 30th	Apr 1st Lecture 17
	Potential flow. Intertial collaps of a cavity. Ch. 13.4,
Midterm II	pp. 218–220;
Apr 6th Lecture 18	Apr 8th Lecture 19
Potential flow: flow around a cylinder. Ch. 13.5,	Potential flow: lift and drag; D'Alembert's paradox.
рр. 220–223;	Ch. 13.5, pp. 220–223;
Apr 13th Lecture 20	Apr 15th Lecture 21
Ch 14.3 pp. 234, 236	Navier-Stokes equations. Cn. 14.3, pp. 234–236.
Ch. 14.5, pp. 254–250.	
Homework 5 assigned: due 4/20/2020	
Apr 20th Lecture 22	Apr 22nd Lecture 23
Classification of flows. The Reynolds number. Similarity.	Gravity driven flow. Laminar pipe flow. Ch 15.2–15.3,
Ch. 14.4, pp. 237–239.	pp. 242–246.
Homework 6 assigned: due 4/27/2020	
Apr 27th	Apr 29th Lecture 24
Midterm III	
May 4th	May oth
Week of Finals	Week of Finals
WEEK OF FILIAIS	WEEK OF FILIDIS