Oral Examination

Observation of CP Violation in Kaon Decays

Igor Senderovich

June 11, 2007

Outline

- 1. Theory
 - i. Review of discrete symmetries
 - ii. Violation of symmetries and the CPT Theorem
 - iii. The Kaon System
 - a. Mixing and eigenstates of CP
 - b. Decay modes and regeneration
- 2. Experiment: Cronin, Fitch et. al.
 - i. Setup
 - ii. Analysis
 - iii. Results

The discrete transformations discussed here have eigenvalues

$$\hat{O} | \psi \rangle = \lambda | \psi \rangle$$
 $\lambda = +1, -1$

where the operator stands in for Charge Conjugation (C), Parity (P), and Time Reversal (T)

What are their eigenstates?

If $[\hat{O},\hat{H}] = 0$, that is if \hat{O} has the same eigenstates as the Hamiltonian, then these energy eigenstates are said to have definite states of symmetry.

CPT Theorem

A local, Lorentz invariant quantum field theory with a Hermitian Hamiltonian must respect CPT symmetry.

- first appeared in the work of Julian Schwinger, then proven more explicitly by Lüders, Pauli and Bell.
- stands on solid ground theoretically and experimentally

Implications: individual violations of permutations of C, P and T must cancel. Thus, <u>violation of CP would require violation of T</u>, which would mean that

- time has a preferred direction on the fundamental scale.
- there is a clue to the matter-antimatter imbalance (the two are otherwise CP-symmetric)

The Kaon System

Neutral Kaon Particles: $K^0 = d\overline{s}; \quad \overline{K}^0 = \overline{ds}$

- Neutral particle with a distinct (opposite strangeness) antiparticle
- Common decay products (e.g. 2π)

Consequence: A neutral Kaon can oscillate into its antiparticle!

These must not be eigenstates of the full Hamiltonian!

The Kaon System

Mixing Formalism: Evidently, the strong interaction Hamiltonian^{*}:

$$H_{strong} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix} \quad \text{eigenstates:} \quad K^0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \overline{K}^0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

acquires off-diagonal "mixing terms" due to the weak interaction:

 $H = \begin{pmatrix} M & V \\ V & M \end{pmatrix}$ eigenstates: $K_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $K_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ eigenvalues: $E_1 = M + V$ $E_2 = M - V$

Time evolution introduces oscillation: $K_1 e^{-\frac{i}{\hbar}(M+V)t} +$

$$K_1 e^{-\frac{i}{\hbar}(M+V)t} + K_2 e^{-\frac{i}{\hbar}(M-V)t} = \sqrt{2}e^{-\frac{i}{\hbar}Mt} \begin{pmatrix} \cos\frac{V}{\hbar}t\\ i\sin\frac{V}{\hbar}t \end{pmatrix}$$

 K_1 and K_2 (imaginary) decay rates are added on the diagonal

* Rest frame assumed to avoid extra contributions to the energy.

June 11, 2007

Neutral Kaons as states of CP Transformation

Problem: Kaons are not good states of CP: $CP(K^0) = -\overline{K}^0$...but the eigenstates of the new Hamiltonian are:

$$K_{1} = \frac{1}{\sqrt{2}} \left(K^{0} - \overline{K}^{0} \right) \implies CP(K_{1}) = \frac{1}{\sqrt{2}} \left(-\overline{K}^{0} + K^{0} \right) = K_{1} \quad \langle CP \rangle = +1$$

$$K_{2} = \frac{1}{\sqrt{2}} \left(K^{0} + \overline{K}^{0} \right) \implies CP(K_{2}) = \frac{-1}{\sqrt{2}} \left(\overline{K}^{0} + K^{0} \right) = -K_{2} \quad \langle CP \rangle = -1$$

Success? CP and the Hamiltonian have simultaneous eigenstates – CP must be conserved, i.e. symmetry states maintained: $K_1 \rightarrow 2\pi \quad \langle CP \rangle_{2\pi} = +1$ $K_2 \rightarrow 3\pi \quad \langle CP \rangle_{3\pi} = -1$

Is this true or can we find: $K_2 \rightarrow 2\pi \quad \langle CP \rangle: -1 \rightarrow +1$

The Kaon System

Experimental Perspective

	τ (s)	Main decay modes	Γ_i / Γ	Experimental use
K_1	~10 ⁻¹⁰	$\pi^+\pi^-$	69.2%	\leftarrow useful for calibration,
		$\pi^0\pi^0$	30.7%	conveniently short lifetime
		$\pi^+ l^- v_l$ or conj. (K_{l3})	67.6%	interesting restantial second of CD
<i>K</i> ₂	~10-8	$3\pi^0$	19.6%	violation: can regenerate K
		$\pi^+\pi^-\pi^0$	12.6%	violation, can regenerate R ₁

$$\begin{array}{c} \text{Regeneration} \\ \vdots \\ K_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} K^0 + \overline{K}^0 \end{pmatrix} \\ K^0 + p \rightarrow \Lambda^0 + K^0 + K^+ \end{pmatrix} \text{ strong interactions:} \\ \text{must conserve strangeness} \\ \text{leave little free energy - unlikely!} \end{array}$$

 K^0 remains, so K_1 is back! (in superposition with K_2)

June 11, 2007

Experimental Setup

 2π decay filtering method:

- both particles are captured: invariant mass of K^0 expected
- forward direction ($\theta = 0$) for the vector sum of the two momenta

Not so for other possible (3-body) decays – K_{e3} , $K_{\mu3}$, $K_{\pi3}$: decay products are lost. Result:

- invariant mass is undercounted
- $\theta \neq 0$

Approach to calibration and measurement

Regenerate K_1 and measure θ and *m* distributions of 2π decay and compare with those of K_2 if such decays are found.

June 11, 2007

Data Analysis

- The result of "mass undercounting": mass spectrum spreads and shifts below the K^0 mass.
- Cutting on K^0 mass and looking for a forward peak in the cos θ distribution (sign of 2-body decay)...
 - 2π decay invariant mass and angle distributions are the same as those from regenerated K_1

	inv. mass (MeV)	peak angle (mrad)
$\overline{K_1}$	498.1 ± 0.4	3.4 ± 0.3
<i>K</i> ₂	499.1 ± 0.8	4.0 ± 0.7

So, having subtracted the background as shown and taken into account relative detection efficiencies, there were found 45 ± 9 CP-violating $\pi^+\pi^-$ decays out of a total of 22700 events. This corresponds to a branching ratio of 0.20 ± 0.04 %.

Reported:

Volume 13, Number 4	PHYSICAL REV	IEW LETTERS	27 July 1964
E	VIDENCE FOR THE 2π DE	CAY OF THE K_2° MESON* [†]	
J. H.	Christenson, J. W. Cronin	, [‡] V. L. Fitch, [‡] and R. Turl	ay [§]
	(Received 10	July 1964)	
This Letter reports the	results of experimental	The analysis program c	omputed the vector mo
aturding degraphed to googe	h for the 2π decay of the	montum of anoh aboved y	ontials shearyod in the

Evidently, the short and long-lived particles (i.e. energy eigenstates having distinct decay rates) previously thought to be eigenstates of CP are in fact:

$$K_S^0 \approx K_1^0 + \varepsilon K_2^0$$
$$K_L^0 \approx K_2^0 + \varepsilon K_1^0$$

where K_1 and K_2 are the pure eigenstates of CP and ε is the degree of violation. Calculated in the analysis of the original experiment: $|\varepsilon| = 2.3 \times 10^{-3}$

Summary

The presented results lead to the following conclusions:

- the Weak interaction slightly violates CP symmetry
- by the CPT theorem, it violates T symmetry as well a preferred direction on the elementary particle scale!
- a small (and not yet satisfactory) degree of CP violation has been verified in the theory of matter-antimatter imbalance.