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We present a theoretical description of resonant charge transfer in collisions of nanoparticles, specifically
for C60 + C60

+ collisions. We predict that transient bonds between colliding fullerenes can significantly extend
the interaction time, allowing for a greater probability of charge transfer. In our model, the dumbbell-shaped
(C60 − C60)+ quasimolecule, that is temporarily formed during the collision, is described as a dynamic system of
120 zero-range potentials. Using this model, we calculate the exchange interaction between colliding fullerenes
and subsequently determine the corresponding charge-transfer cross sections at different collision velocities.
Our results have been verified with data obtained from quantum molecular dynamics simulations of the fullerene
collisions. The presented theoretical model provides a description of the experimental data on the C60 + C60

+

resonant charge-transfer collision through the inclusion of the temporary formation of dumbbell-shaped fullerene
molecules at low collision velocities.
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Introduction. Investigations of charge-transfer processes
have a rich history due to many applications in plasma
physics, astrophysics, atmospheric science, and chemistry
[1–3]. In atom-ion systems, the physics of charge-transfer
collisions is well understood and the probabilities of the
underlying quantum processes can be determined with high-
accuracy ab initio calculations [4–6]. A significantly higher
level of complexity arises in molecular charge-transfer pro-
cesses because the dynamics of the nuclear degrees of
freedom may strongly influence the parameters of the ex-
change interaction between colliding particles. Since the
advent of ultrafast laser pulses, charge-transfer collisions have
also been used to probe fundamental quantum dynamics as
these reactions are heavily dependent on the properties of
the electronic wave function [7]. Recently, charge-transfer
research has expanded to more complex systems such as large
molecules, nanosize clusters, and condensed matter materials
[8–11]. Fullerenes have become a popular molecule to study
due to their high degree of symmetry [12] and potential tech-
nological applications [9,13,14].

Total cross sections for C60 + C60
+ resonant charge-

transfer collisions were first measured by Rohmund and
Campbell in 1997 [15]. Their experiment was arranged to de-
tect charge transfer for small scattering angles only because of
numerous studies of ions colliding with atoms or molecules.
Glotov and Campbell later discovered C60 resonant charge
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transfer at large scattering angles and used these results to
update the originally published total cross-section data [16].

Several models [17–19] have been employed to explain
the results of the small scattering angle measurements [15].
Charge transfer at large scattering angles implies that a no-
ticeable portion of the charge-transfer cross section is due
to collisions where the C60 molecules overlap. These kinds
of reactions were not accounted for in any of the theories
describing the small scattering angle cross section. Such over-
lap leads to the temporary formation of the dumbbell-shaped
(C60 − C60)+ quasimolecule, with chemical bonds between
atoms from different C60 molecules. These temporary bonds
can act as “bridges,” creating efficient pathways for the charge
to transfer between fullerenes. These bonds are also impor-
tant for the transfer of the translational kinetic energy of the
fullerenes into internal degrees of freedom. These processes
bring complexity into developing a consistent theoretical
model but they add the possibility of using measurements
of charge-transfer processes to probe the collision dynamics
of the internal structure of nanoparticles. The formation of
stable fullerene dimers has been investigated in several articles
[20–22]. We argue that the temporary formation of dumbbell-
shaped fullerene molecules can create long-lived compound
states which increase the probability of charge transfer. The
formation of the long-lived dumbbell-shaped (C60 − C60)+
molecules with different orientations have been confirmed in
our quantum molecular dynamics (QMD) simulations of slow
fullerene collisions as well. However, realistic simulations of
colliding fullerenes require the inclusion of a large number of
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excited states. This means meaningful ab initio calculations of
collision trajectories are extremely difficult. Our QMD simu-
lations only include the ground state, and were only meant
to support our semiempirical model by demonstrating the
transfer of translational kinetic energy into internal degrees
of freedom.

To illustrate the impact of bridge formation on the charge-
transfer cross section in C60 + C60

+ collisions, we employed a
simplified model of the electronic structure of C60 molecules.
Sixty zero-range electronic pseudopotentials have been ar-
ranged in the geometry corresponding to the structure of C60.
The electronic energies, the wave functions, and the exchange
interaction between C60 and C60

+ have been calculated by
combining these zero-range potential (ZRP) results with the
Holstein-Herring method [23]. We computed the cross sec-
tion of the charge-transfer collisions σ (v) as a function of the
collision velocity v and compared our results to experimental
data. From the analysis of the experimental data, we predicted
the lifetime τ (v) of the (C60 − C60)+ quasimolecule created
by the temporary chemical bonding between the C60 and the
C60

+.
Methods. To calculate charge-transfer cross sections we

start with the definition of a cross section for semiclassical
atomic and molecular collisions with a central potential,

σ =
∫ ∞

0
2πb P(v, b)db, (1)

where b is the impact parameter and P(b, v) is the proba-
bility of charge transfer. For the resonance charge-exchange
process, P(v, b) can be approximated as [23]

P(v, b) = sin2 �(v, b) = sin2

(∫ ∞

−∞

εg − εu

2
dt

)
, (2)

where εg and εu are the energies of the gerade and unger-
ade states of the C60 + C60

+ system. Through the use of
pseudopotentials, we have developed a computationally in-
expensive method for the analyses of fullerene collisions.
Similar to charge-transfer processes in multielectron atom-ion
collisions, we assume that during C60 + C60

+ collisions there
is a single active electron which is bound by N = 120 ZRPs
with a time-dependent distance between fullerenes R(t ). Each
fullerene is modeled as 60 ZRPs. Individual ZRPs are cen-
tered on the carbon atoms of the fullerenes and each potential
corresponds to a boundary condition imposed on the wave
function of the active electron �(r) at the location of the
carbon atoms. This wave function is represented by a linear
superposition of Green’s functions [24,25] centered on the
carbon atoms, �(r) = ∑N

n=1 ci ∗ G(r, Rn, ε), where Rn is the
radius vector of the nth carbon atom and ε is the energy of
the active electron. In our simplest model, Green’s functions
can be formally expressed using the normalized wave function
ψn(r) of an electron bound with energy ε by a single ZRP,

ψn =
√

2πκ G(r, Rn, ε) =
√

κ

2π

e−κ|r−Rn|

|r − Rn| , (3)

where κ = √
2|ε| is related to the binding energy of the

active electron in the field of a single ZRP [26]. Typically,
ZRP systems are treated by solving the transcendental equa-
tion produced by the 120 boundary conditions [24]. For a
system of this size, however, accurate solutions to the tran-
scendental equation are difficult to obtain. Instead, we can
estimate the eigenenergies by diagonalizing the Hamiltonian
of the C60 − C60

+ quasimolecule, which is represented by the
symmetric 120×120 matrix,

H =

⎡
⎢⎢⎢⎣

ε0 
1,2(R1,2) · · · 
1,120(R1,120)


1,2(R1,2) ε0 · · · 
2,120(R2,120)
...

...
. . .

...


1,120(R1,120) 
2,120(R2,120) · · · ε0

⎤
⎥⎥⎥⎦, (4)

where 
n,m(Rn,m) describes the exchange interaction between
ψn(r) and ψm(r). These states are localized on the nth and mth
carbon atoms and Rn,m = |Rn − Rm| is the distance between
these atoms. As a crude estimate, the energy ε could be set
to the negative of the ionization potential of a carbon atom.
However, our approach used ε, and the corresponding value
of κ , as a fit parameter. The parameter κ was adjusted so
that the computed density distribution for the active electron
in C60 was similar to the electron density predicted by a
density-functional theory calculation. In this case, we can
imagine the approximated wave function as an average of all
the electrons in the C60 molecule or as the wave function of a
single positively charged hole.

In order to calculate the exchange interaction 
n,m(Rn,m),
which describes the interaction between the m and n state,
we use the Holstein-Herring method [23]. The exchange in-
teraction between two degenerated states ψn(r) and ψm(r)
is expressed via the probability flux of the electron wave
function through the plane that is perpendicular to Rn,m and

halfway between the centers m and n [23],


n,m(Rn,m) = 2
∫ ∞

−∞

∫ ∞

−∞
ψn(z = 0)

×∇ψm(z = 0) · �Rn,m

|| �Rn,m||dy dx, (5)

choosing the plane that is halfway between the two poten-
tials to be the x-y plane. When using the wave function
shown in Eq. (3), Eq. (5) yields the following result: 
n,m =
κ exp[−κRn,m/Rn,m]. Since this result is analytic, populating
the matrix shown in Eq. (4), and finding its eigenvalues and
eigenvectors at different distances between the fullerenes can
all be done at little computational cost. Figure 1 shows the
electron density of a single C60 molecule calculated using
this method, alongside the electron density of a single C60

molecule calculated using density-functional theory and nor-
malized to one electron.
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FIG. 1. The electron wave function found using the zero-range
potential method (a) alongside the electron density (normalized to
one) calculated using density-functional theory (b) for one plane.
The zero-range potential method used κ as a fit parameter and κ =
0.85 hartree1/2. The spots of high probability correspond to carbon
nuclei. The four spots closest to the x axis are brightest since those
carbon nuclei are the closest to the plane that is being plotted.

Computation of the charge-transfer cross section in colli-
sions between fullerenes requires an extended analysis of the
collision trajectories R(t ). Contrary to ion-atom collisions,
where the straight-line trajectory approximation provides an
excellent description of the majority of experiments, the tra-
jectories of nanoparticles may be strongly influenced by the
excitation of the nanoparticles’ internal structures and by
the formation of long-lived intermediate complexes. This
change in trajectory becomes especially important for ex-
plaining the large scattering angle contribution to the total
charge-transfer cross section.

Modeling average trajectory. The collision dynamics de-
pend on the impact parameter and collision energy. Within
the interval of experimental velocities reported in Glotov and
Campbell [16], the fullerene collisions exhibit small scatter-
ing angles if the impact parameters are larger than the C60

diameter d = 13.33 bohr radii a0 [27]. This implies a rel-
atively small value of the exchange phase �(v, b) < 1 and
so a small probability P(v, b), similar to what is usually
observed in ion-atom collisions. If the impact parameter is
less than the diameter d , the average probability of charge
transfer 〈P(v, b)〉 	 1/2, due to the large value of the ex-
change interaction and exchange phase �(v, b). This reflects
the overlap of the internal structures of the colliding particles.
The contribution to the charge-transfer cross section for b < d
is therefore estimated as σc 	 0.5πd2. Finally, when b ∼ d
we expect the formation of temporary chemical bonds, or
“bridges,” between fullerenes. These bridges, and the transfer
of the collision energy into the fullerenes’ internal degrees of
freedom, extend the time of interaction between the fullerenes
at low collision velocities. Colliding fullerenes can form
a long-lived dumbbell-shaped (C60 − C60)+ quasimolecule.
The lifetime of this state and the structure of this state de-
pends on the collision velocity, which affects the probability
of charge transfer between the fullerenes.

To visualize the mechanism for the formation of temporary
chemical bonds, we performed QMD simulations of C60 +
C60

+ collisions at different velocities and impact parame-
ters. Our simulations were performed using the atom-centered
density-matrix propagation (ADMP) method [28] as imple-
mented in the GAUSSIAN 16 electronic structure programs

FIG. 2. The total nuclear kinetic energy as a function of time for
one of our simulations. This simulation had an impact parameter of
b = 14.17a0 and a collision energy of 410 eV.

[29]. The electronic energy and its gradient are computed
using the PM3 semiempirical method [30,31].

The translational energy loss and collision time delay have
been investigated at different impact parameters and at col-
lision energies in the range from around 1 eV up to several
hundred eV. In Fig. 2 the kinetic energy of all 120 carbon
atoms is shown as a function of time from one of our simula-
tions. This simulation is at a collision energy of 409 eV and an
impact parameter of b = 14.17a0, which is slightly larger than
the C60 diameter d . In this relatively fast collision, the overlap
of electronic states of different fullerenes is not enough to
establish long-lived bonds between the fullerenes and so only
3% of the translational kinetic energy is lost to the internal en-
ergies of the C60 molecules. We found that the relative loss of
translational energy is only significant for impact parameters
below the diameter of C60 and has only a slight dependence on
collision velocities at higher collision energies. For collisions
with an energy on the order of 1 eV, the interaction time
between fullerenes is sufficiently long enough to establish
“bridges” and the loss of the translational energy increases.
The formation of bridges and the formation of long-lived
quasimolecules has been observed at these lower collision
velocities. The effective number of bridges and the time delay
associated with the formation of intermediate (C60 − C60)+
states decrease with an increase of collision velocities and
have been hardly seen at velocities above 2×104 m/s.

Based on our QMD simulations and the results of other
simulations [20–22], the chemical bonds of C60 molecules
do not stretch significantly during collisions at the consid-
ered velocities. The molecules mostly experience tempo-
rary compression and temporary deformation during their
close encounter. In order to include the compression of
the molecules in our model, while we calculate the splitting
between the gerade and ungerade states as a function of the
intermolecular distance R, we forced the atoms to never be
closer than 1 Å.

Key to our model is the prediction that temporary bonds
between fullerenes significantly increase the probability of
charge transfer. The time τ (v, b) of the interaction between
two colliding C60 fullerenes, also known as the collision time
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delay, is a function of both the velocity v and impact parame-
ter b, and it can be determined as

τ (E , b) = 2
dηr (E , b)

dE
+ 2

dηc(E , b)

dE
, (6)

where ηr (E , b) and ηc(E , b) are the Breit-Wigner resonance
and background scattering phases, respectively [32], and E
is the collision energy. During collisions involving fullerenes,
the formation of dumbbell quasimolecules occur in various
excited states with different configurations. Therefore, we
expect several Breit-Wigner resonances arising at different
resonance velocities vi. The following simplified empirical
formula can be used for the evaluation of the collision time
delay and thus the lifetime of the temporary chemical bonds,

τ (v, b) =
∑

i

ai(b)
γic(

v2 − v2
i

)2 + γ 2
i

+ τc(v, b), (7)

where the first term is the sum of the Breit-Wigner reso-
nances describing the formation of various long-lived states of
the quasimolecule (C60 − C60)+ with a total resonance width
γi(b). In multichannel scattering, the partial width γic (b) cor-
responds to the resonant charge-transfer channel and the factor
ai(b) takes into account the dependence of the relative strength
of resonances on the impact parameter b. In the vicinity of
resonance, the dependence of the background scattering time
delay τc(v, b) on the velocity and impact parameter can be
neglected.

For the considered collision velocities, the trajectories of
the particles are straight lines, R(t ) = √

b2 + v2t2, for most
of the collision. Accurate trajectories need to take into account
the time delay τ (v, b) due to the temporary formation of
quasimolecules. The exponential decay of the quasimolecules
with the characteristic time τ (v, b), corresponds to the Breit-
Wigner resonance formula. The average rate of change v(t )
of the interparticle distance can be represented as v(t ) =
v(1 − e−|t |/τ (v,b) ), where v is the collision velocity. Since the
absolute value of time is used, this equation assumes that
the same time is required for the formation of and for the
spontaneous decay of the quasimolecule state. Therefore, the
trajectories of R(t ) can be approximated by the following
equation:

R(t ) =
√

b2 + v2t2(1 − e−|t |/τ (v,b) )2. (8)

This function approaches v as t approaches either negative
infinity or positive infinity, meaning that at large distances R
the trajectory returns to the original straight-line trajectory.

Results. The experimental data of the charge-transfer cross
sections [16] were measured for the interval of collision ve-
locities v > vi where the time delay is not expected to be
very large, and τ may be approximated using only a single
resonance vi with no background time delay τc. This sin-
gle resonant velocity was fit to the data and found to be
9×103 m/s. The width of the resonance γi was also fit to the
data and found to be 5×102 m2/s2. The factor ai(b) was taken
to be 1/b2. γic was fit as well and was γic = 300a2

0 m4/s3. The
effective size of the zero-range potentials in our model was set
to κ = 0.85 hartree1/2. For collisions with b < d we estimated
the charge-transfer cross section as σc 	 0.5πd2. This core
cross section should not be sensitive to the collision velocity.
It corresponds to trajectories with large scattering angles and

FIG. 3. Data from Glotov and Campbell [16] (shown as black
dots) alongside our models. The upper part of the graph repre-
sents the total cross section and the lower part represents the small
scattering angle cross section. The two solid curves are our model
accounting for the extended interaction time due to a temporary
“bridge” formation. The two dashed curves represent our model
without accounting for the bridge formation.

large recoil energy losses observed in the measurement of
fast neutral products [16]. The solid curves in Fig. 3 show
the results of our model, which does account for the forma-
tion of quasimolecules, for both the small scattering angle
cross section (lower curve) and total charge-transfer cross
section (upper curve). Figure 3 also shows the experimental
data for both the small scattering angle charge transfer cross
section [15] and the total charge transfer cross section [16].
The lower dashed curve is the small scattering angle cross
section computed using the electron wave function from the
jellium model of C60 and the Holstein-Herring method [19].
By assuming the probability of charge transfer is 1/2 for all
impact parameters below the diameter of C60, d , this cross
section was shifted up, shown as the upper dashed curve. This
simplified model, which does not extend the interaction time
in order to account for the formation of quasimolecules, does
not fit well to the data at lower collision velocities. Results
of our ZRP model calculations (the solid curves) are in very
good agreement with the experimental data.

The available experimental data [16] can illustrate only a
marginal increase of the cross sections due to the formation
of long-lived compound quasimolecules in collisions of two
fullerenes. We predict that the Breit-Wigner resonances at
low collision velocities support long-lived bridges between
fullerenes and this leads to a significant increase in the charge-
transfer cross sections. Direct experimental measurements of
C60 + C60

+ charge transfer and scattering cross sections at
energies of several eV would be an important test of the bridge
model and for the formation of the intermediate compound
states in collisions of slow fullerenes.

Conclusion. An efficient computational model has been
developed to explain experimental data on the cross sec-
tion of C60 + C60

+ resonant charge-transfer collisions. In
this model, the electronic state of the C60 active electron is
described by an electron bound by 60 identical zero-range
potentials evenly distributed across the C60 molecule. The
Hamiltonian of the colliding fullerenes is reduced to the
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corresponding 120×120 matrix that describes the electronic
state of the quasimolecule formed in the C60 + C60

+ colli-
sion. The electronic states of the quasimolecule are computed
for different time-dependent distances between colliding par-
ticles. The proposed model of the charge-transfer process
accounts for the formation of temporary chemical bonds be-
tween colliding fullerenes. These bonds significantly extend
the interparticle exchange interaction. We predict that at lower
collision energies the charge exchange between fullerenes
is controlled by the Breit-Wigner resonances arising due to

a temporary creation of a dumbbell-shaped quasimolecule
(C60 − C60)∗+. The formation of long-lived quasimolecules
have been also observed in our QMD simulations. Results of
the calculated resonant charge-transfer cross section in C60 +
C60

+ collisions are in good agreement with the experimental
data.
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