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Abstract

The basic characteristics of molecular systems under shear are brie
y reviewed and methods
to control friction are proposed. These control methods allow to eliminate chaotic stick–slip
motion, and modify frictional forces. The possibilities to control friction are demonstrated using
a model system which displays the main experimentally observed behaviors, obtained in mea-
surements on nanoscale con�ned liquids and granular layers. The methods should be applicable
to real systems for which time series of dynamical variables are experimentally available. The
only necessary condition is the existence of (possibly unstable) sliding regimes of motion in
experimental systems. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent experiments allow for detailed investigations of frictional forces of thin liq-
uids sheared between two solid surfaces [1–3], or of sheared granular layers [4]. Inter-
facial friction is one of the oldest problems in physics and chemistry and certainly one
of the most important from a practical point of view. Due to its practical importance
and the relevance to basic scienti�c questions there has been major increase in activity
in the study of interfacial friction on the microscopic level during the last decade. New
experimental tools have been developed that allow for detailed investigations of friction
at nanometer length scales, a range over which the related processes have been termed
nanotribology. Intriguing structural and dynamical features have been observed experi-
mentally in nanoscale molecular systems con�ned between two atomically smooth solid
surfaces. These include for example, stick–slip motion, intermittent stick–slip motion,
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Fig. 1. Schematic sketch of a model geometry.

transition to sliding above a critical velocity, and a dependence of friction on the his-
tory of the system. These and other observations have motivated theoretical e�orts,
both numerical and analytical, but most issues still remain open.
From a practical point of view one wishes to be able to control frictional forces

so that the overall friction is reduced or enhanced, the chaotic regime is eliminated
and instead smooth sliding is achieved. Such control can be of high technological
importance for micromechanical devices, for instance in computer disk drives, where
the early stages of motion and the stopping process, which exhibit chaotic stick–slip,
pose a real problem [5].
Controlling frictional forces has been traditionally approached by chemical means,

namely using lubricating liquids. A di�erent approach, proposed here, is by controlling
the system mechanically. Our goal is twofold: (a) to achieve smooth sliding at low
driving velocities, which otherwise correspond to the stick–slip regime; (b) to decrease
the frictional forces.
Here we demonstrate [6] the possibility to control friction by mechanical means in

a model that has been shown to display the main experimentally observed properties
obtained in measurements on nanoscale con�ned liquids [1–3], and granular layers [4].
Although we discuss here a speci�c simple model, the possibility to control friction
mechanically, and the methods applied for the control, are model independent and
amenable to experimental veri�cation.
Other methods of control have been recently proposed [7–9]. The methods suggested

in [6,7] use feedback control, whereas those proposed in [8,9] do not employ feedback
mechanism and rely on a “brute force” modi�cation of system dynamics.
We consider a one-dimensional model that includes two rigid plates and a single par-

ticle of mass m embedded between them. The interaction between the particle and each
of the plates is described by a periodic potential Up(x). There is no direct interaction
between the plates. The top plate of mass M is pulled by a linear spring with a force
constant K connected to a stage that moves with a velocity v (see Fig. 1 for a sketch
of the model). Experimentally one usually follows the time dependence of the spring
force for a �xed, or varying in time, stage velocity [1–3]. Summarizing the experimen-
tal observations, one distinguishes between a low-driving velocity region, where the
system exhibits dry-friction-like behavior, and higher-driving velocities which corre-
spond to a more lubricated-like behavior. The low-velocity regime is characterized by
chaotic stick–slip motion, which is basically determined by the interplay between static
and kinetic friction forces, and whose details depend on the mechanical properties of
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Fig. 2. Typical time series of the spring force for dimensionless driving velocity v = 0:27: (1) chaotic
stick–slip motion without control, (2) trapped-sliding state stabilized by control, (3) decoupled-sliding state
stabilized by control. Spring force is presented in units of static friction force, Fs = 2�U0=b [12].

Fig. 3. Eliminating the chaotic stick–slip motion under mechanical control. Dimensionless driving velocity
v = 0:34. Spring force is presented in units of static friction force, Fs = 2�U0=b [12].

the probing system [2,10,11]. For high velocities the system displays smooth sliding
which resembles thinning of the e�ective viscosity. Low- and high-velocity regimes
are separated by a well-de�ned critical driving velocity, vc.
Before analyzing the model and describing the control methods, we present in Fig. 2

an example of a chaotic stick–slip behavior typical to the low-driving velocities. Lines
(2) and (3) in Fig. 2 correspond to di�erent types of sliding states [12]. These states
are unstable for low-driving velocities but, as shown below, could be stabilized by
the control methods proposed here. The main idea of this work is to replace chaotic
stick–slip motion (line 1) by smooth sliding (lines 2 or 3) in low-velocity region.
Fig. 3 displays the result of control, applied in the time window t1¡t¡ t2, where
smooth sliding is achieved. Fig. 4 illustrates another method of control. The control
is switched on in the high-velocity range, which corresponds to stable sliding, and
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Fig. 4. Time oscillations of the spring force for the deceleration of the driving stage: (a) without control, (b)
under control. Spring force is presented in units of static friction force, Fs = 2�U0=b [12]. For convenience
the stage velocity (instead of time) is indicated on the axis. Vertical arrows indicate the critical velocity vc.

then the controllable system is decelerated toward the low-velocity region keeping the
chosen sliding state. As a characteristic force unit in Figs. 1–4 we use the value of the
static frictional force Fs [12]. Figs. 3 and 4 clearly demonstrate the possibility to drive
chaotic motion to smooth sliding and to decrease the frictional force by controlling the
system mechanically.
We now turn to the description of the model and of the details of the control

methods. The coupled equations of motion for the top plate and the particle are

M �X + �(Ẋ − ẋ) + K(X −Vt) +
@Up(x − X )

@X
= f(t) ; (1)

m �x + �ẋ + �(ẋ − Ẋ ) + @Up(x)
@x

+
@Up(x − X )

@x
= 0 ; (2)

where x and X are the coordinates of the particle and the top plate, respectively.
The second term in Eq. (1) and the second and the third terms in Eq. (2) describe
the dissipative forces between the particle and the plates and are proportional to their
relative velocities. These terms account for dissipation due to phonons and=or other
excitations. The third term in Eq. (1) is the driving force due to the stage motion. The
additional pulling force, f(t) is introduced here in order to shorten the transient time
for switching of the control, and will be discussed later. The remaining terms are due
to the periodic interaction potential between the particle and the plates.
We choose the potential Up(x) to be

Up(x) =−U (p) cos
(
2�
b
x
)
: (3)
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The amplitude of the periodic potential that the particle feels depends on the normal
load which we use as the control parameter:

U (p) = U0(1 + �(p− p0)) : (4)

U0 is the value of the potential for some nominal value of the normal load p0, and �
is a dimensional constant. Eq. (4) assumes small load variations around p0, which, as
shown below, are su�cient to achieve control.
The dynamical behavior of the model is determined by the following dimensionless

parameters: 
= �=(m!) is a dimensionless friction constant, where != (2�=b)
√
U0=m

is the frequency of the oscillations of the particle in the minima of potential; �=m=M
is the ratio of particle and plate masses; � = 
=! is the ratio of frequencies of the
free oscillations of the top plate 
 =

√
K=M and the particle; and v = V=(!b) is

the dimensionless stage velocity. In the calculations reported in this Letter we use
parameter values that belong to the underdamped [10] case: � = 0:02, 
 = 0:1, and
�= 0:125. The control methods should apply to overdamped limit as well.
For f=0 and p=p0 the model presented on Fig. 1 leads to a number of dynamical

behaviors as the stage velocity is varied. We have observed four quantitatively di�erent
dynamical regimes [12,13]: (a) stick–slip motion of the top plate at low velocities; (b)
as the stage velocity increases the motion of the top plate is characterized by irregular
stop events with time intervals between them that increase rapidly with v; here the
stick–slip motion becomes erratic; (c) in the kinetic regime the top plate never stops
and the spring executes chaotic oscillations, and (d) two types of smooth sliding occur
when the stage velocity is above the critical velocity vc.
With the exception of very small driving velocities (v¡v0, where v0 = 0:03 for

the chosen numerical values of system parameters) the dynamics of the system is
chaotic for the velocity regimes (a)–(c). Namely, the largest Liapunov exponent, which
provides a quantitative measure of the degree of stochasticity, is positive [12,13]. The
velocity dependence of the Liapunov exponent (see Fig. 5) gives a clear manifestation
of the transition to sliding [12]. As the stage velocity increases and approaches a critical
velocity vc, the largest Liapunov exponent decreases steeply and becomes negative at
v = vc, suggesting the disappearance of chaos in the transition and the onset of the
sliding regime (d). This concurs with the decrease in the amplitude of the spring force
oscillations. The value of the critical velocity for our chosen values of parameters is
vc = 0:365.
For driving velocities v in the range vc ¡v¡vtc, where v

t
c ≈ 1:59, the system is in

the sliding regime and the particle is trapped by one of the plates and performs small
oscillations around a minimum of the particle–plate interaction potential. The frictional
force corresponding to this trapped-sliding state, is [12]

F(ẋ) ≈ �ẋ : (5)

At higher stage velocities v¿vuc , where v
u
c ≈ 0:59, the character of sliding changes.

The particle ceases to feel the corrugation of the plates and moves with the velocity
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Fig. 5. Velocity dependence of the largest Liapunov exponent.

v=2. This transition to the decoupled-sliding state is accompanied by a drop in the
frictional force, which becomes the same as for 
at plates [12],

F(ẋ) ≈ 1
2�ẋ : (6)

It should be noted that Eq. (6) is the lower bound for the frictional force at a given
driving velocity. If the stability intervals of trapped and decoupled states overlap, i.e.
v(t)c ¿ v(u)c , as for our choice of parameters, there is a bistability region vuc ¡ v¡vtc,
and we have hysteretic behavior.
Our aim is to stabilize the sliding states for driving velocities v¡vc, where one

would expect chaotic stick–slip motion. Sliding states correspond to stable periodic
orbits of the system with two periods: (a) period T=1=v, which corresponds to a motion
of the particle being trapped by one of the plate; (b) period T=2=v, which corresponds
to the particle moving with the drift velocity v=2. In the chaotic region both orbits still
exist, but are unstable. Our approach is therefore to drive the system into a sliding
state by controlling these unstable periodic orbits (UPO). This makes it possible to
extend the smooth sliding to lower velocities. The control of such orbits in dynamical
systems have been proposed [14] and experimentally applied to a wide variety of
physical systems including mechanical systems, lasers, semiconductor circuits, chemical
reactions, biological systems etc. (see [15] for references).
We are interested in controlling the chaotic friction at small velocities and also in

maintaining smooth sliding when starting at v¿vc and decelerating the system. Here
we present the results for the control of the trapped-sliding state. Fig. 3 demonstrates
the e�ect of the mechanical control on the time dependence of the spring force in the
kinetic regime (c), v = 0:34. The control is switched on at time t1 and is shut down
at time t2. We clearly see that as a result of the control the chaotic motion of the
top plate is replaced by a smooth sliding which corresponds to a trapped state with
the frictional force given by Eq. (5). Fig. 4 illustrates another method of catching
the desired orbit, where we start from high driving velocities v¿vc, for which the
trapped-sliding state is stable. The system then decelerates under control, keeping the
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chosen sliding state until we reach the velocity of interest. Fig. 4a and b exhibits the
velocity dependence of the spring force without and under control, correspondingly.
The control of decoupled-sliding state performed with help of the second approach
will be discussed in a separate publication. The use of this state gives an additional
possibility to decrease friction (twice compared to the trapped state).
Control methods are characterized by two independent steps: (a) reaching the vicinity

of an UPO and (b) stabilizing the system. For more details on the stabilization of the
UPO see Ref. [6].
Two methods of “forcing” the system to reach a close neighborhood of these or-

bits are used in this work. The �rst method, proposed in [14], is applicable for con-
trol of any chaotic system and could be applied to control friction in the range of
velocities v0¡v¡vc. It relies on the ergodic wandering of the trajectory to bring
it close to the desired state. Here chaos actually is advantageous. In the present
work, in order to shorten the transient time for control switching, we use the fol-
lowing trick. We apply an additional pulling force (force f in Fig. 1) that e�ec-
tively reduces the dimension of system from 4 to 3. The force is applied when three
of four dynamical variables, namely the position and the velocity of the embedded
particle and the velocity of the top plate, are in a small region around their val-
ues for a periodic orbit. The deviation of the position of the top plate from the
value on the periodic orbit, or, what is equivalent, the deviation of the length of
the pulling spring, is compensated by additional force, f(t). This dimensional re-
duction is su�cient to decrease the transient time to an acceptable value. The re-
sults, demonstrating controlled motion of the system are presented in Fig. 3.
The time scale for control is b=V in our model, but since we deal with very low
stage velocities the value is reasonable. In addition, if the system is moderately chaotic
the control could be applied every N periods. In our case N ∼ 100.
The second method is more speci�c to the problem of friction, and it is easily

applicable for systems of any dimension. The method utilizes the fact that desired
periodic orbits are stable for higher stage velocities, namely in the sliding regimes.
The range of stability is di�erent for each orbit. Therefore, we start from driving
velocities for which the desired periodic orbit is stable. Then we decelerate the stage
gradually in small velocity steps, until we reach the velocity of interest. During the
decelerating process the control is permanently switched on so that the system remains
on the periodic orbit. The results, demonstrating controlled motion of the system by
this method, are presented in Fig. 4.
We have demonstrated the possibility to control friction in a model system described

by di�erential equations. For realistic systems time series of dynamical variables, rather
than governing equations, are experimentally available. In this case the time-delay
embedding method [16] could be applied in order to transform a scalar time series into
a trajectory in phase space. This procedure allows to �nd the desired unstable periodic
orbits and to calculate variations of parameters required to control friction.
In conclusion, methods to control friction in a model system have been proposed to

avoid the chaotic behavior, already at low velocities, and to achieve the lower bound
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of the friction force. The choice of control parameters is not unique and practically
any system parameter (or combination of system parameters) can act as a control
parameter. The only necessary condition for the application of the proposed methods
is the existence of unstable orbits which correspond to sliding modes of motion.
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