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Abstract

We investigate a model system which consists of a chain of particles that interact with two
periodic potentials representing two con�ning plates, one of which is externally driven. The
model leads to a spectrum of rich behaviors in the motion of the top driven plate: stick–slip,
intermittent kinetic regime, characterized by force uctuations, and two types of sliding above a
critical driving velocity vc. Similar behaviors are typical of a broad range of systems including
thin sheared liquids. The relaxation of the “slip” part between two “stick” events in the stick–slip
time series may display more than one characteristic time scale. The di�erent relaxation times
are shown to be related to a velocity-dependent e�ective frictional force felt by the driven plate.
c© 1998 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Sheared liquids con�ned between two atomically smooth solid surfaces display a
spectrum of behaviors which include stick–slip motion followed, as the relative velocity
of the plates increases, by intermittent and smooth motions [ 1–3]. Di�erent models
have been proposed to account for these types of motion including spring-block models
[4], chains adsorbed on a substrate [5], models with melting–freezing transitions [6,7]
and an embedded-particle model [8,9].
However, the origin of stick–slip motion and the related phenomena are still un-

clear and under some debate. Experimentally, it has been observed [10] that, under
overdamped conditions, “slip” relaxation manifests more than one characteristic time
scale. Typically, a sharp decrease at early times is followed by a tail of a slow decay.
Phenomenological theoretical studies [6,7] have related the stick–slip behavior to a
dynamical phase transition [6], or to a velocity-dependent frictional force [7].
In this paper we discuss a microscopic model which leads to the observed behavior

[10] and to predictions that are amenable to experimental tests.
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2. The model

We extend the model [8,9] of a single particle that interacts with two periodic
potentials that represent two con�ning plates, one of which is externally driven, to
include an embedded chain of particles (Fig. 1). Consider a one-dimensional system of
two rigid plates and a chain of particles embedded between them. The top plate of
mass M is pulled by a linear spring with a spring constant K connected to a stage
which moves with a velocity V.
The equations of motion for the top plate and chain particles are

M �X +
N∑

i=1

�(Ẋ − ẋi) + K(X −Vt) +
N∑

i=1

@U (xi − X )
@X

= 0 ; (1)

m �xi + �(2ẋi − Ẋ ) +
∑

j 6=i

@V (xi − xj)
@xj

+
@U (xi)
@xi

+
@U (xi − X )

@xi
= 0 ; (2)

where N is the number of particles in the chain, xi (i = 1; : : : ; N ) and X are the co-
ordinates of chain particles and the top plate, respectively, and m is the mass of each
particle. The second terms in Eqs. (1) and (2) describe the dissipative forces between
the particle and the plates, which are proportional to their relative velocities. These
terms account for dissipation which arises from interaction with phonons and=or other
excitations. The third term in Eq. (1) is the driving force due to the stage motion.
The remaining terms originate from the spatially periodic interaction between the par-
ticle and the plates, U (x), and from the inter-particle interactions within the chain,
V (xi − xj). There is no direct interaction between the plates. In the present work we
choose U (x) = −U0 cos(2�x=b), where b is the spatial period of the particle–plate inter-
action potential; inter-particle potential is assumed to be harmonic with nearest-neighbor
interactions only, V (xi−xi±1) = k(xi−xi±1∓a)2=2. Here k is the elastic chain constant,
and a is the equilibrium spacing between particles in a free chain.
Let us introduce the following dimensionless variables and parameters: the coordinate

y = x=b and the time � = !t, where ! = (2�=b)(U0=m)1=2 is the frequency of the small
oscillations of the particle in the minima of the potential U (x);  = �=(m!) which is a
dimensionless friction constant, � = m=M the ratio of particle and plate masses, � =

=! the ratio of frequencies of the free oscillations of the top plate 
 = (K=M)1=2 and
the particle, � = (b−a)=b the mis�t of the substrate and chain periods and � = (!ch=!)2
the ratio of the frequencies related to interparticle and particle–plate interactions; here
!ch = (k=m)1=2 is the characteristic frequency of the chain.

Fig. 1. Schematic sketch of the model geometry.
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Generally, the stick–slip dynamics of the chain model is characterized by a chaotic
behavior of the top plate and the embedded particles. In this article we focus only on
the range of low stage velocities, where the motion is close to periodic.

3. Results

The chain model introduced above exhibits similar behavior previously observed in
the single-particle model [8,9]. Again the motion of the top plate, which is the experi-
mental observable, shows stick–slip, intermittent and sliding regimes. Here, however,
we notice vibrational uctuations typical of the chain which superimpose on the corre-
sponding single particle behavior. Fig. 2 demonstrates the possibility that changes in the
sliding phase can be accompanied by changes in the chain length. Shown are motion
in a stretched state of the chain in one phase and in a free state in the other phase.
We concentrate below on the stick–slip regime typical to low driving stage velocities,

and analyze a time window which corresponds to “slip” motion between two “stick”
events. Namely, just as the top plate overcomes the static friction and starts moving,
dissipation sets in and the plate relaxes toward another stick event. This slip relaxation
pattern depends on the conditions under which the stick–slip motion is being studied.
In the present work we consider the overdamped case, where the characteristic slip
time is much longer than the response time of the mechanical system ∼2�√M=K . The
overdamped regime is realized experimentally if the spring constant K is su�ciently
weak, and=or if the friction constant � is large. In numerical calculations we use the
following values of parameters: � = 1=125,  = 0:3, N = 15, � = 0:1, � = 1:0.
Figs. 3a and 3b display the time evolution of the spring force and of the top-

plate velocity during the slip motion. One clearly notices more than one time scale

Fig. 2. Time variations of the spring force and the chain length for the case where the driving stage moves
with a small constant acceleration. � = 0:02,  = 0:1, � = 0:125, N = 5, � = 0:2, � = 0:1.
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Fig. 3. Time evolution of the spring force (a), top plate velocity (b), and length of the embedded chain (c),
during slip relaxation. Solid lines are the results of simulations, dashed lines in (a) and (b) correspond to the
e�ective force approximation, Eq. (3). Inset shows a stick–slip time series with a window which indicates
the time interval presented in (a)–(c). In dimensionless units stage velocity V=(!b) = 0:046, and spring
constant � = 0:015.

in the relaxation process. The behaviors observed for the spring force and the top-plate
velocity appear also in the properties of the chain. The chain length [Fig. 3(c)] shows
two distinctive regimes: strong uctuations for t0¡t¡t1 and quasi-periodic oscillations
around a stretched state for t1¡t¡ts.
In order to provide a coarse-grained picture of the top-plate motion, which is the

basic observable, we use an approximate description [9] based on a separation to “slow”
and “fast” motions of the system. We describe the slow system motion in terms of an
e�ective velocity-dependent force that acts on the top plate

M �X + F(Ẋ ) + K(X −Vt) = 0 : (3)

The e�ective force F(v) is calculated by assuming that the top-plate moves with the
constant velocity, and by averaging the potential and dissipative components of the
friction over the fast uctuations of the top-plate motion [8,9].
In Fig. 4 we present the e�ective force F(v) which displays three di�erent regimes:

(1) At high plate velocity, v¿vth, the chain decouples from the plates and moves with
a velocity v=2. (2) At intermediate velocities, v∗¡v¡vth the chain is trapped by one
of the plates and each particle performs small oscillations around the corresponding
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Fig. 4. E�ective frictional force acting on the top plate as a function of plate velocity. Dashed-dotted line
shows the smoothed force used for the approximate description according to Eq. (3). Dotted lines with slopes
N and N=2 are presented in the inset for reference.

minimum of the particle–plate interaction potential. (3) At low velocities, v¡v∗, the
center mass of the chain again moves with the velocity v=2, but its length strongly
uctuates.
In order to simulate the motion of the top plate, the e�ective force should be sup-

plemented by the static friction Fs and kinetic friction Fk . The former is the largest de-
pinning force [9] and the latter is the minimal force necessary to keep the plate sliding
at low velocities. The static friction is determined by the potential interaction between
the plates and the chain, and the kinetic friction has a dissipative nature. Neither Fs
nor Fk are included in the e�ective force found by the time averaging.
Velocity-dependent forces with features similar to those found here have been pos-

tulated to mimic the motion of the top plate in stick–slip experiments [10,7]. Here we
calculate F(v) directly from the model. In Fig. 3 we �t the spring force and top plate
velocity, obtained through the solution of Eq. (3), to the solution of the model (Eqs.
(1) and (2)).
Introducing the e�ective force F(v) makes it possible to relate the two time in-

tervals in the slip relaxation (Fig. 3) to the nature of F(v). Basically, the relaxation
pattern should depend on the maximum value of the velocity reached by the top plate.
For our choice of parameters the maximum of the plate velocity lies in the range
v∗¡vmax¡vth. The relaxation process probes therefore only those phases that cor-
respond to v¡vth. Namely, only two regimes are to be expected. Indeed the initial
part of the slip relaxation (or top-plate velocity) results from the frictional force in
the range v∗¡v¡vth, and the longer time relaxation results from F(v) in the range
v¡v∗. Both the time dependence and the amplitude of the slip relaxation predicted
here are consistent with the experimentally observed behavior [10].
For other choices of parameters, for which the maximum of the top-plate velocity

lies in the range v¿vth, the relaxation probes all three characteristic ranges of F(v)
leading to relaxation pattern with three distinct time scales.
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The observed temporal behavior of the slip part depends on how broad is the probed
range of the e�ective force F(v). Namely, by changing the spring constant K one can
control the experimentally observed relaxation pattern of the slip: one, two or three
types of relaxation.
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