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Interfacial friction is one of the oldest problems in physics and chemistry and certainly one of the most
important from a practical point of view. Due to its practical importance and the relevance to basic scientific
questions, there has been a major increase in the activity of the study of interfacial friction on the microscopic
level during the last decade. New experimental tools have been developed that allow for detailed investigations
of friction at nanometer length scales, a range of related processes which have been termed nanotribology.
Intriguing structural and dynamical features have been observed experimentally in nanoscale molecular systems
confined between two atomically smooth solid surfaces. These include, for example, stick-slip motion,
intermittent stick-slip motion characterized by force fluctuations, transition to sliding above the critical velocity,
and a dependence of friction on the history of the system. These and other observations have motivated
theoretical efforts, both numerical and analytical, but most issues remain controversial. In spite of the recently
growing efforts, many aspects of friction are still not well understood. In this feature article we investigate
in detail a minimalistic model which includes most of the relevant microscopic parameters needed to obtain
the above experimental observables. We also establish relationships between the properties of the embedded
system and the frictional forces. Our aim is to better understand the origins of friction and to learn how to
control its nature. Our approach leads to a new look at this old problem and to predictions amenable to
experimental tests.

Introduction

The field of nanotribology evolves around the attempts to
understand the relationship between frictional forces and the
microscopic properties of systems. Recent revival of interest
in friction1-6 has unraveled a broad range of phenomena and
new behaviors which help shed light on some “old” concepts
which are already considered textbook material. These include
the static and kinetic friction forces, transition to sliding, and
thinning, which have been widely discussed but whose micro-
scopic meaning is still lacking.

New experimental tools have been developed that allow for
detailed investigations of confined molecules and macromol-
ecules down to nanometer length scales. As an example, the
surface forces apparatus (SFA) has been modified to explore
shear forces between two atomically flat solid surfaces separated
by molecularly thin liquid layers,7-10 see Figure 1. Summariz-
ing the experimental observations, one distinguishes between
low driving velocity region (V < Vc), where the system exhibits

solid-like behavior, and higher driving velocities (V > Vc) which
correspond to a more liquid-like behavior. A sharp boundary
at V ) Vc is observed between the solid-like and the liquid-like
regimes. Figure 2 exhibits different types of frictional forces
as observed experimentally.11 As seen in the figure, the low
velocity regime is characterized by a stick-slip motion which
is basically determined by the static and kinetic friction forces
and whose details depend on the mechanical properties of the
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Figure 1. Basic tribological system (from ref 10).
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probing system. For high velocities, the system exhibits a
smooth sliding motion which resembles a thinning of the
effective viscosity. Typical of the intermediate range between
low and high driving velocities is a chaotic behavior which is
still to be investigated.

What one wishes to deduce from the above experimental
observations are new insights that will help establish the basics
of nanotribology, differentiate among different embedded
systems, and enable one to control the desired type of motion.
To be more specific: (i) Which of the observables depend on
the properties of theembedded molecular systemand which on
the mechanical setup?(ii) How do the static (Fs) and kinetic
(Fk) friction forces and the characteristic velocities, determining
the transition to sliding, depend on the molecule-molecule and
molecule-surface interactions? (iii) What is the effect of
incommensurability of the liquid and solid structures on the
frictional dynamics? (iv) What are the time and length scales
that dictate the duration of slip events in the stick-slip motion,
and how do they affect the critical velocityVc corresponding to
the transition from stick-slip to sliding? (v) What are the
phases of the embedded molecular system that correspond to
the different regimes of motion? (vi) What is hidden under
the chaotic behavior and how to quantitatively analyze it? (vii)
How does one extract the velocity dependent frictional forces
from experimental data?

Some of these questions have been already addressed in
previous works based mainly on large scale molecular dynamics
calculations.12-15 Atomistic molecular dynamics simulations
have a wide range of applicability and have reached a high level
of accuracy. They have however their inherent limitations.
Right now, time scales of tens of nanoseconds and length scales
of tens of nanometers are attainable in computer simulations.
These time and length scales may not be sufficient for the
consideration of slow relaxation processes in liquid films which
play an important role in friction and lubrication phenomena.
The time scale and length scale of the fluctuations in liquid
films should increase drastically near points of phase transitions,
which have been suggested13,14 for the explanation of stick-
slip motion. The origin of stick-slip motion and its related
phenomena remains therefore still under some debate. Never-
theless, the limitation of time scales is not the principal problem
of atomistic molecular dynamics simulations, as it will be
hopefully resolved in the future. The basic open questions
concerning molecular dynamics simulations relate to derivations
of general laws which are not sensitive to the specific details
of the simulations and the discovery of the few parameters
controlling the processes under consideration.

In this feature article we would like to discuss above the
questions within a minimalistic model which is still general
enough and includes most of the parameters relevant to address

the questions raised above (see Figure 3). The model serves
as an example of how to establish the relationships between
the microscopic characteristics and the macroscopically observed
quantities. However, our conclusions, we believe, are mostly
model independent.

Model

We use here the minimal number of parameters required to
discuss the frictional properties of molecular systems embedded
between two plates one of which is externally driven (Figure
3). We distinguish between the mechanical (external) param-
eters and the parameters of the embedded system (internal). The
internal parameters in our model arem the mass of a single
particle in the chain ofN identical particles;U0 the amplitude
of the potential of periodb that represents the corrugation of
the molecule-plate interaction in the lateral direction;ωch the
characteristic frequency that corresponds to the intrachain
interactions;η the dissipation coefficient which is responsible
for the dissipation of the kinetic energy of each particle, due to
excitations in the plate;δ is the misfit between the substrate
and chain periods,δ ) (b - a)/b, wherea is the spatial period
of undisturbed chain. There are two characteristic intrinsic
frequencies in this model:ωch andω ) (2π/b)xU0/m which is
the frequency of the small oscillations of the particle in the
minima of the particle-plate potential. The external parameters
areM, the plate mass, andK the spring constant of the spring
connecting the top plate to the stage. There is also an external
frequency related to these parameters,Ω ) xK/M.

The model presented in Figure 3 leads to a number of
different dynamical behaviors as the stage velocity is varied.
We have observed four quantitatively different dynamical
regimes;16 (a) at low velocities we observe a stick-slip motion
of the plate; (b) as the stage velocity increases the motion of
the top plate is characterized by irregular stop events with time
intervals between them that increase rapidly withV. Thus, the
stick-slip motion becomes more erratic and intermittent (c) in
the kinetic regime the top plate never stops and the spring
executes chaotic oscillations, and (d) two types of smooth sliding
occur when the stage velocity is above the critical velocityVc.
Similar behaviors are typically observed in experiments on thin
sheared liquids and have recently been reported also for sheared
granular layers.17

There are, generally, two approaches used to investigate shear
forces of confined liquids: tribological (constant driving veloc-
ity)7,9 and theological (oscillatory external drive).8 In the bulk
the two approaches lead to similar results, but less is known
about the relationship between tribology and rheology in
nanoscale confined systems. Here we concentrate on the
tribological approach where the velocity is a well defined
variable. Establishing a relationship between these approaches
is essential for creating a unifying description of the response
to shear.

Static and Kinetic Friction

Low driving velocity measurements lead to a distinction
between two fundamental quantities:static(Fs) andkinetic(Fk)
friction forces, which determine the behavior at early stages of
the motion. Fs is the force needed to initiate the motion

Figure 2. Typical friction traces for solidlike nanolayers; here shown
for two close-packed DMPE monolayers sliding at 25°C (ref 11). With
solidlike monolayers stick-slip motion often occurs at low sliding
velocities but reverts to smooth sliding above the critical velocity which
is Vc ) 0.1 µm/s in this case.

Figure 3. Schematic sketch of the model geometry.
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(depinning force in our model).Fk is the minimal force
necessary to keep the plate sliding. On the basis of the
assumption that the system was in the ground state before
initiating the motion,Fs is expressed by the amplitude of the
potential corrugation and can be shown to be

for noninteracting particles. It is clear from eq 1 thatFs depends
on the internal parameters only.

When considering the kinetic friction, the dissipative nature
of the system enters andFk depends also on the external
parameterM. Fk can be obtained by balancing the gain in
energy due to the driving force and the energy loss due to
dissipation. An estimate, again for noninteracting particles,
leads to18

Inferring Fs andFk from experiments requires some caution. It
is generally accepted10 that in the overdamped case (η2 > 4KM)
the static and kinetic friction forces correspond to the maxima
and minima in the spring force observed during stick-slip
oscillations. However, this practical definition holds only if
after each slip the system relaxes back to its ground state. Thus
the experimentally obtained value ofFs may depend on the rate
of equilibration prior to its measurements. Figure 4 presents
an example whereFs is ill-defined since the condition for
arriving back to the ground state is not fulfilled, and the system
still carries the “memory” of the previous dynamical state. The
kinetic friction in Figure 4 follows eq 2. The stick-slip
behavior disappears whenFk approachesFs.

In the underdamped limit (η2 < 4KM) the temporal behavior
of the slip part is dominated by the response time of the
mechanical system∼2π/Ω. Therefore, deducingFk from the
minima of the stick-slip regime might be misleading. We will
come back to this point later. BecauseU0 competes as well
with the dissipation coefficientη and with the mechanical
external parameters we have chosen to work in the limitη2 <
8πU0M/b, which is underdamped with respect toη andU0. This
limit ensures the observation of macroscopic stick-slip.

Effective Frictional Force

The various experimental observations obtained by SFA
measurements (stick-slip, transition to sliding, details of slip

events, etc.) can be understood and analyzed in terms of an
effective velocity dependent force that acts on the top plate.
The slow motion of the top plate follows the following equation

wherex is the position of the top plate andV is the stage velocity.
Equation 3 and the effective forceF(x̆) can be shown16 to be
derived directly from the model discussed above. Under the
assumption of separation of time scales, one can view the top
plate as moving with a constant velocity,x̆, and calculateF(x̆)
by averaging the potential and dissipative components of friction
over the fast fluctuations of the system.18 However, in order
to simulate the motion of the top plate, the effective force should
be supplemented by the static frictionFs and kinetic friction
Fk, discussed above. NeitherFs nor Fk are included in the
effective force found by time averaging. The kinetic friction
forceFk could be found by calculating the average velocity of
the top plate as a function of the driving force applied directly
to the plate.19,20

Some general properties of the effective forceF(x̆) and the
corresponding phases of the embedded chain can be obtained
(see Figure 5), which do not strongly depend on the
model:16,18,21-23

Property 1. For a given velocityx̆, the frictional force per
particle is always larger than1/2ηx̆. The minimal value1/2ηx̆ is
obtained when the plate is moving with the rate faster than the
characteristic intrinsic system ratesω andωch (this resembles
the widely observed thinning effect8). This friction law corre-
sponds to the state where the embedded chain is decoupled from
the plates, and is practically free, moving with a velocity of the
center massV/2. In this state the fluctuations in the particle
velocities are small. The existence of a decoupled state should
be model independent and is caused by the fact that in the frame
moving with the center of mass; the periodic potentials act as
forces with a high relative frequency. Because of the inertia
the particles cannot follow these fast oscillations and behave
as if the potential is absent.

Figure 4. StaticFs and kineticFk friction forces as a function of the
dissipation coefficient. The calculations were done for the following
values of parameters:V ) 0.03bω, ε ) m/M ) 1/120,N ) 15, δ )
0.05, ωch/ω ) 1, Ω/ω ) 0.015. Error bars on the graph denote the
dispersion of the averaged values of forces. The force unitFs

0 is
defined by eq 1:Fs

0 ) 2πU0/b.

Fs ) Fs
0 )

2πU0

b
(1)

Fk ) 8
π

ηxU0

M
(2)

Figure 5. Effective frictional force acting on the top plate as a function
of dimensionless plate velocity,V ) V/(bω). Dotted lines with slopes
Nη andNη/2 are presented on parts a and c for reference. Parts a and
b correspond to noninteracting particles,η/mω ) 0.1. Parts c and d
correspond to a chain and the dot-dashed line in the part d shows the
smoothed force used for the approximate description according to eq
3; N ) 15, η/mω ) 0.3.

Mẍ + F(x̆) + K(x - Vt) ) 0 (3)
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In our model example the decoupled state becomes unstable
below a certain value of the top plate velocity, which, for
noninteracting particles, can be approximated by

Property 2. For V < Vc
(d) the fluctuations of the particle

velocity grow and the energy dissipation increases. At inter-
mediate velocities,V* < V < Vc

(t), the chain is trapped by one of
the plates and each particle performs small oscillations around
the corresponding minimum of the particle-plate interaction
potential. The frictional force corresponding to the trapped
dynamic state, is

whereN is the number of particles in the chain.
Again the existence of an upper limit of sliding velocityVc

(t)

above which a trapped state disappears, should not depend on
the model. The reason is that, due to the dissipative forces
between the particles and the plates, the trapped chain feels
roughly a uniform force proportional the sliding velocity. If
this force overcomes the depinning force (static friction,Fs)
the chain becomes untrapped (decoupled). The limiting velocity
is therefore

The trapped state is stable only if the sliding velocity is larger
than a criticalV*, which for noninteracting particles equals to

Here, as in the case of decoupled chain, the trapped state is
destroyed forV < V* by the fluctuations of the particle velocity
andV* corresponds to a local minimum inF(x̆). The presence
of trapped liquid layers at moving surfaces is typical to many
systems. We can speculate that already our simple chain picture
gives the qualitative conditions for the existence of this
phenomenon.

The different critical velocities discussed above are displayed
in Figure 6 which correspond to transitions between different
phases of motion.

One should note that if the stability intervals of trapped and
decoupled states overlap (Vc

(t) > Vc
(d)) there is a bistability

region and we expect hysteretic behavior.
Property 3. In the low velocity region,V < V*, the center

of mass of the chain moves again with the average velocity
V/2, but its length strongly fluctuates. Here we find the
following characteristic features of the frictional force which
we smooth out to emphasize the general features: a “plateau”
for x̆ close toV* and a positive slope ofF(x̆) for lower velocities.
However, the width of the plateau, the slope of the smoothed
F(x̆) at smallx̆, and the limiting value forx̆ f 0 depend on the
internal parameters: on the ratio of the frequencies related to
interparticle and particle-plate interactions,F ) (ωch/ω)2, and
on the misfitδ of the substrate and chain periods. We find a

finite effective friction at low velocities for small values ofF
and zero misfit (see Figure 5a). For noninteracting particles
the valueF(V ) 0) can be estimated as

In contrast, a “viscous-like” friction law, namely,F(V ) 0) )
0, has been observed forF g 1 and nonzero misfit (see Figure
5c). These two limits correspond to the case where the particles
perform microslips,F(V ) 0) * 0, and to the case where the
particles follow smoothly the top plate,F(V ) 0) ) 0,
respectively. Similar effects have been also found in large scale
molecular dynamics simulations.12,15,24

These considerations show that the properties of the velocity
dependent frictionF(x̆) are strongly related to the dynamical
nature of the embedded system.

How are the experimental results, found in SFA measure-
ments, related to the properties of the effective frictional force
and correspondingly to the dynamics of embedded molecular
systems? As we have already discussed above one of the
important experimental characteristics is a critical velocityVc,
which corresponds to a transition from stick-slip to sliding
(Figure 2). However, the transition to smooth sliding, for which
fluctuations are negligibly small, passes through a kinetic
regime, where no sticking is observed but yet the motion is
chaotic and the spring force displays large fluctuations. The
smooth sliding itself is characterized by either a trapped state
or by a decoupled state (the “thinning” phase), as discussed
above. These make the determination of the critical velocity
Vc, a quite delicate issue.

We obtain smooth sliding forV > V* where the trapped state
becomes stable. However, stick-slip motion disappears at
lower velocitiesV < V*. The detailed features of the transition
from stick-slip to sliding depend on the experimental condi-
tions: overdamped or underdamped. In the overdamped regime,
the stick-slip behavior should be observed for stage velocities
for which

This, together with eq 2, allow for a rough estimate of the critical
velocity Vc if one approximatesF(x̆) ∝ ηx̆. Namely, in terms
of the static friction,

as proposed in.13,14

In the underdamped case25

This equation stems from the fact that under the underdamped
condition the maximum velocity of the top plate is small (of
the order of the stage velocity) and the stick-slip relaxation
probes only the vicinity of x̆ ≈ 0, where F(x̆) can be
approximated by a linear behavior,F(x̆) ≈ F(0) + F′(0)x̆.

In contrast toV*, which is a function of the internal parameters
only, the critical velocityVc is a function of both internal and
external parameters. Equations 10 and 11 demonstrate that the
critical velocities in overdamped and underdamped limits depend
differently on the internal and external parameters. The
amplitude of the stick-slip time patterns can be shown to be

Figure 6. Characteristic velocities:V* and Vc
(t) are the lower and

upper limits of the trapped sliding state;Vc
(d) is the lower boundary of

the region of stability of the decoupled sliding state.

Vc
(d) ) 2

π
ωbxx1 + 4( η

mω)4
- 2( η

mω)2
(4)

F(x̆) ) Nηx̆ (5)

Vc
(t) ) Fs/(ηN) (6)

V* ) 1
πx3

2
ωb[1 - 3( η

mω)2
- O(( η

mω)4)] (7)

F(V ) 0) ≈ (4π)1/3 (ηm
ω )2/3

(8)

F(V) < Fk (9)

Vc ∝ xFsb

M
(10)

Vc ∼ Fs - F(0)

x4KMx2πF′(0)
(11)
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Fs -Fk, under overdamped conditions, and 2(Fs - F(0)) for
the underdamped case. It should be noted that at least in our
model systemFk * F(0), contrary to what has been assumed
previously.10

Our calculations performed for chains of finite length give
nonzero values of static and kinetic friction forces even for the
case where the chain and substrate structures are incom-
mensurate. This leads to stick-slip motion at the macroscopic
scale, in spite of the fact that under this conditions the effective
force demonstrates viscous-like behavior, which corresponds
to smooth motion of the embedded system at the microscopic
scale. The existence of finite domains of coherent motion of a
liquid under shear (chains of finite length in our model) could
be a reason for stick-slip behavior which is common at
macroscopic scale. This mechanism leads to stick-slip motion
even in the case of incommensurability of the contacting
surfaces.

The effective force calculated by averaging the potential and
dissipative components of the friction appears valuable for
describing the response of the top plate, and as we see later
also in analyzing slip events. On the other hand, one can also
obtain an instantaneous friction force directly from the time
series of the stick-slip behavior, using the force balance eq 3.
Because the effective force calculated above relies on the
separation of time scales, it is averaged over the fast processes
and therefore it is not necessary the same as the instantaneous
force obtained directly from the time series. Figure 7 shows a
typical stick-slip motion in the overdamped limit and its
corresponding instantaneous frictional force versus the top plate
velocity. This frictional force is clearly not a single-valued

function of the top plate velocity as indeed observed experi-
mentally in sheared granular materials.17 It is clear that in this
example the velocity is not sufficient to describe the dynamics
of the system, and other variables are needed. Recently a model
has been proposed in this direction.26

Closer Look at Slip Events

We now focus on the properties of individual slip events and
relate them to the previously discussed. It has been experi-
mentally observed10 that under overdamped conditions, “slip”
relaxation manifests more than one characteristic time scale.
Typically a sharp decrease at early times is followed by a tail
of slow decay. Figure 8a displays the time evolution of the
spring force during the slip motion which has been calculated
for the chain embedded between two plates.18 One clearly
notices more than one time scale in the relaxation process. We
divide the slip part into two intervals:t0 < t < t1 andt1 < t <
ts, as marked in the figure. Following in time the velocity of
the top plate (Figure 8b) reemphasizes the existence of two
temporal behaviors. Figure 8b clearly demonstrates that in the
time ranget0 < t < t1 the velocity drops abruptly, and in the
ranget1 < t < ts the velocity relaxes slowly toward the stage
velocity. In the second time range the amplitude of the velocity
oscillations is of order of the average velocity. The two
behaviors observed for the spring force and the top plate velocity
appear also in the properties of the chain. For instance, the
chain length (Figure 8c) shows two distinctive regimes: strong
fluctuations fort0 < t < t1 and quasiperiodic oscillations around
a stretched state fort1 < t < ts.

Similar features of the top plate motion have been observed
also in the case of the single particle model under overdamped
conditions.16 This is in contrast to underdamped results, where
the slip time is shorter and slip motion is characterized by one
type of behavior.

Basically, the relaxation pattern should depend on the
maximum value of the velocity reached by the top plate. The
latter increases with the decrease of the spring constantK. For
our choice of parameters the maximum of the plate velocity
lies in the rangeV* < Vmax < Vc

(t). The relaxation process

Figure 7. Time evolution of the spring force (a), top plate velocity
(b), and instantaneous frictional force as a function of top plate velocity
in the stick-slip regime (c). Dimensionless top plate velocity is
presented in unitsωb. V/bω ) 0.046,ε ) m/M ) 1/120,N ) 15,δ )
0.05,ωch/ω ) 1, Ω/ω ) 0.015.

Figure 8. Time evolution of the spring force (a), top plate velocity
(b), and length of the embedded chain (c), during slip relaxation. Solid
lines are the results of simulations, dashed lines in parts a and b
correspond to the effective force approximation. Inset shows a stick-
slip time series with a window which indicates the time interval
presented in Figs. a-c. Dimensionless stage velocityV/(ωb) ) 0.046;
spring constantR ) 0.015.
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spans velocities smaller thanVmax, and therefore probes only
those phases that correspond toV < Vc

(t). Namely, only two
regimes are to be expected. Indeed the initial part of the slip
relaxation (or top plate velocity) results from the frictional force
in the rangeV* < V < Vc

(t), and the longer time relaxation
results fromF(V) in the rangeV < V*. Both the time dependence
and the amplitude of the slip relaxation predicted here are
consistent with the experimentally observed behavior.10

For other choices of parameters, for which the maximum of
the top plate velocity lies in the rangeV > Vc

(t), the relaxation
probes all three characteristic ranges ofF(V) leading to relaxation
pattern with three distinct time scales.

The observed temporal behavior of the slip part depends on
how broad is the probed range of the effective forceF(V). This,
as mentioned, depends onVmax, which is determined by the
experimentally chosen spring constantK. Thus, by changing
the spring constantK one can control the experimentally
observed relaxation pattern of the slip: one, two, or three types
of relaxation. The weaker isK; the larger is the probed range
of F(V).

Another measurable feature that emerges from the current
model is theK-dependence of the “slow” relaxation part, whose
origin is in the low velocity effective force. Although this region
of F(V) is characterized by large fluctuations, we find that
solving eq 3 for a smoothedF(V) mimics well the slip relaxation
presented in Figure 8a,b. The top plate velocity strongly
oscillates att1 < t < ts, providing “self-averaging” of the
effective force. This is the reason why the smoothed force
describes well the slip relaxation also in this time interval.

The use of eq 3 with the smoothedF(V) shows that a positive
slope of F(V), such thatF′(V)2 > 4KM is essential for the
existence of the slow relaxation part. According to the coarse-
grained picture the duration of this part of the slipT ) ts - t1
should be proportional toF′(V)/(2KM). The dependence ofT
on the spring constantK found in our simulations (see Figure
9) is in agreement with this conclusion. This result differs from
the conclusion in the melting-freezing model,26 where the
duration of the slow relaxation interval is determined by the
freezing rateτ-1 (a parameter not needed in our model) and
does not depend ofK. Thus the analysis of the slip relaxation
could help to differentiate among various mechanisms of
friction.

Summary and Future Directions

The effective frictional force appears to play a central role
in understanding the dynamical properties of systems under

shear and may therefore help in modifying and controlling
frictional behavior. One should be able to deduce the effective
frictional force directly from the experimental measurements,
a direction which has been overlooked but which might be
helpful in probing the nature of the embedded system.

Future investigations of various aspects of atomic scale
friction should provide deeper insight to this long standing
problem. In particular, we believe that relating the tribological
approach described here to the traditional theological methods
will help unify the views with different experimental results.

Another aspect which has been overlooked is the nonlinear
nature of frictional dynamics. For a wide range of system
parameters, we find that the motion of the top plate and the
embedded molecules is chaotic. In order to provide a quantita-
tive measure of the degree of stochasticity of the motion, we
have calculated16 the velocity dependence of the largest Li-
apunov exponent of the trajectories (see Figure 10). Any system
with at least one positive exponent is defined to be chaotic.27,28

The magnitude of the exponent reflects the time scale over
which the system dynamics becomes unpredictable. It should
be noted that Liapunov exponents can be extracted29 from SFA
measurements and provide additional information on the nature
of the dynamics of the top plate. Chaos is clearly an intrinsic
property of the confined liquids under shear, and it has been
observed in systems which are largely free of inhomogeneities.30

A possible new direction has been recently proposed which
allows to convert chaos into smooth sliding motion. From a
practical point of view, one wishes to be able to control frictional
forces so that the overal friction is reduced or enhanced, the
chaotic regime is eliminated, and instead, smooth sliding is
achieved. Such control can be of high technological importance
for micromechanical devices, for instance, in computer disk
drives, where the early stage of the motion and the stopping
process, which exhibit chaotic stick-slip, poses a real problem.31

Controlling frictional force has been traditionally approached
by chemical means, namely, using lubricating liquids. A
different approach is by controlling the system mechanically,
for instance by modulating the normal load.32,33 The goal is
2-fold: (a) to achieve smooth sliding at low driving velocities,
which otherwise correspond to the stick-slip regime; (b) to
decrease the frictional forces. This could lead to novel methods
of reducing friction.32,33

Although we have discussed a relatively simple model, our
conclusions are general and expected to underline the basics of
nanotribology. This approach could be also applied to the
description of dynamics of dry friction,34,35 friction in granular
materials,17 and earthquakes.36
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