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Void-containing materials with tailored Poisson’s ratio
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Assuming square, hexagonal, and random packed arrays of nonoverlapping identical parallel
cylindrical voids dispersed in an aluminum matrix, we have calculated numerically the
concentration dependence of the transverse Poisson’s ratios. It was shown that the transverse
Poisson’s ratio of the hexagonal and random packed arrays approached 1 upon increasing the
concentration of voids while the ratio of the square packed array along the principal continuation
directions approached 0. Experimental measurements were carried out on rectangular aluminum
bricks with identical cylindrical holes drilled in square and hexagonal packed arrays. Experimental
results were in good agreement with numerical predictions. We then demonstrated, based on the
numerical and experimental results, that by varying the spatial arrangement of the holes and their
volume fraction, one can design and manufacture voided materials with a tailored Poisson’s ratio
between 0 and 1. In practice, those with a high Poisson’s ratio, i.e., close to 1, can be used to amplify
the lateral responses of the structures while those with a low one, i.e., close to 0, can largely
attenuate the lateral responses and can therefore be used in situations where stringent lateral stability
is needed. ©2000 American Institute of Physid$s0021-897€00)04519-9

I. INTRODUCTION Our goal is to identify voided materials with tailored
transverse Poisson’s ratios. It is worth noting that for aniso-

Interest in the elastic properties of voided materials intropic materials, the upper and lower bounds for Poisson’s

general, and their Poisson’s ratios in particular, has beepatio are 1 and-1, respectively(for isotropic materials the

steady during the last decade. Thorpe and Jadiake re- pounds are 0.5 and 1).° In practice, voided materials with a

viewed a number of exact relationships in two-dimensionahigh Poisson’s ratio, i.e., close to 1, can be used to amplify

elasticity, together with some interesting applications. Cherthe lateral responses of the structures while those with a low

kaev, Lurie, and MiltoA found remarkable invariance of the yalue close to 0, can largely attenuate the lateral responses

stress fields in two-dimensional elastic systems loaded at thénd can therefore be used in situations where a stringent

boundary by fixed forces when the compliance tensor wasequirement on the lateral stability is imposed.

shifted uniformly. Based on this invariance they proved that

the effective Young’s modulus of a two-dimensional me-

dium with holes does not depend on the Poisson’s ratio of- NUMERICAL

the matrix material. Dagt al.” came to the same conclusion We studied numerically the effective elastic properties

using computer simulations, where a continuum medium wags \,gided materials in three different arrangements of non-

modeled as a pixel lattice connected in a spring networkyerjapping circular holes: hexagonal, square, and random
under periodic boundary conditions. Three different arrange Fig. 2.

ments of circular holes were studied: the honeycomb lattice, ~pgriodic morphology-adaptive meshes comprised of up
the triangular lattice, and a random one. Eischen and, 5 mjllion triangles were used in our calculations. As an
Torquatd applied a boundary element method to a hexagogyample, the mesh employed for a random structure of nine
nal array of infinitely long, aligned cylinders embedded in nonoverlapping identical holes is sketched in Fig. 3.
matrix. Using properties for each phase representative of 14 torm three-dimensional periodic models, each mesh
comm_only used materials, they tal_JuIated the ove_rall elaStiFriangle was viewed as a base of a prism with equal heights
moduli over a wide range of matrix volume fractions. FOr 4tached to each node perpendicular to the plane. An iterative
square cells with walls of constant thickness, it wasgqnjygate-gradient solver with a diagonal Jacobi's precondi-
d(.amonstraFerd that their stlff_ness was highly anisotropic, tioning was employed. Three-dimensional constitutive laws
with two ,St'ff gnd two compliant dlrect|on_s. ~ were used to calculate the overall elastic constants, without
In this article we study, both numerically and experi- 555 ming either plane stress or plane strain. More details on
mentally, voided materials with parallel nonoverlapping e generation of periodic morphology-adaptive meshes and

identical cylindrical holes drilled in various spatial arrange-he calculation of effective elastic properties can be found in
ments and hole volume fractions, taking as a particular eXgefs 7 and 8.

ample an aluminum matrigFig. 1). As a test, we repeated calculations assuming different
Poisson’s ratios for the matrix. Interestingly, the effective

¥Electronic mail: olga.goussev@empa.ch Young's modulus did not depend on the Poisson’s ratio of

0021-8979/2000/88(7)/4013/4/$17.00 4013 © 2000 American Institute of Physics

Downloaded 21 Dec 2000 to 137.99.44.156. Redistribution subject to AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html.



4014 J. Appl. Phys., Vol. 88, No. 7, 1 October 2000

o |
SNTNTNTN NN ;
O YS9 w |
U INTRONT |
H ¥ h | 1 3

b A

N |
. W . i 3
e Eyy |

| ‘
/ ‘
]1
! |
7
¥
J’//
Y’ ,e*‘"
V4
i /’ N/
| : '
“ > strain measurements

X

FIG. 1. Experimental arrangement studied.

the matrix material, as it should according to the prediction

of Refs. 1-3.

It was found that the effective transverse Young's modu
lus of all structures studied decreased gradually to zero at t
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FIG. 2. Morphologies studieda) square;(b) hexagonalfc) random.
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FIG. 3. A periodic morphology-adaptive mesh for a random structure.

percolation limit as the void fraction increased, with the
square structure being the stiffégthen loaded in thex ory

5direction in Fig. 2 and the random the weakd#tig. 4a)].

Calculated values for the hexagonal array almost coin-

cided with those calculated by Eischen and Torghiaging a

oundary element method. The deviation was typically less
than 5%. Comparison of our numerical resUlEg. 4(a)]
with those of Dayet al® shows that for the hexagonal array
the results are quite comparalj@ir calculations yield up to
12% stiffer structures However, for the random structure
the difference is larger. It could be explained by the fact that
our model is a nonoverlapping model, whereas the model of
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FIG. 4. Calculated effective Young’s mod#) and Poisson'’s ratiog) for

the hexagonal, square, and random packed arrays. The symbol specification
is given in the figure. For the random array, five independent computer
configurations were generated at each void fraction studied. Calculated
Young’s moduli and Poisson'’s ratios of the individual configurations were
used to evaluate the average values and the error bars shown in the figure.
For the regular hexagonal and square arrays, the calculations delivered a
single estimate for a given void fraction.
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FIG. 6. A strain measurement for the hexagonal structure with 70% voids.

FIG. 5. Bricks of aluminum with 50% voids.

for the pure matrix, i.e., 0.33. At such moderate volume frac-

Day et al. allows overlaps between the voids, leading to ation, the size of the “necks” between the holes in the square
more rapid decrease of the effective Young’s modulus uporfray is close to the radius of the holes, thus allowing one to
increasing the void fraction. surmize that the concentration dependence of Poisson’s ratio

Figure 4b) shows that the transverse Poisson’s ratios off the square array should have a nonstructural, solid-like
the hexagonal and random packed arrays approached 1 up8A9n.
increasing the concentration of the voids while that of the
square packed array approache@vden loaded in tha&ory  Ill. EXPERIMENT
direction in Fig. 1. For the hexagonal structure, our results
for the effective Poisson’s ratios faithfully reproduced thoseI
calculated with both the boundary element methadd the
discretized-spring network mod&lith a deviation of less
than 11%. Calculated values of the Poisson’s ratio of the
random structures studied differed significantly from those of hexagzonal caloulation
Day et al® To the best of our knowledge, there existno | squ afe calculation
rgsults. for the transverse Poisson’s ratio qf the voided mate- 80+ o hexagonal experiment
rials with a square arrangement of the voids. ! o square experiment

Both the boundary element formulation employed by
Eischen and Torquatoand the finite element formulation
used in our work are accurate in principle. One should there-
fore expect identical predictions for comparable situations.
In practice, however, there are numerical imperfecti@its
nite meshes, round-off errors, gtso the two methods may
deliver somewhat different results. The consistent agreement
between the two numerical predictions obtained for the hex-
agonal array validates convincingly the two implementations
and makes us confident in the significance of the numerical
predictions obtained in the current study. In contrast, the
discretized spring-network formulation presented by Day

Experimental measurements were carried out by measur-
ng the Poisson’s ratios of aluminum rectangular bricks un-
der compression with 36 identical cylindrical holes drilled

Young’s Modulus E (GPa)

0.8 4

=}

et al2 involves some approximations so the moderate devia- §
tions seen between their and our predictions should perhaps @ 0 6-.
be unavoidable. g

Day et al? studied the behavior of the hexagonal, trian- & 1 (b)
gular, and random arrays near the critical void fractions. ; 0.4+
They demonstrated that the behavior could be rationalized in § T 7= i
terms of various neck formations. Here we have found that 2 0.2 %
the concentration dependence of Poisson’s ratio of the square ~ E
array differs significantly from those typical of the random 0.0 —
and hexagonal arraysee Fig. 4b)]. For example, at a void 00 02 04 06 08 1.0
fraction of 0.4, the square array has a Poisson’s ratio of 0.17 void volume fraction

while the_ random_ and _he?(a_gon"_il arrays still exhibit Poisg, 7, Young's moduli and transverse Poisson’s ratios measured on bricks
son’s ratios practically indistinguishable from that assumeaf aluminum with holes.
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with both square and hexagonal packed arrays. Samples wittoes not depend much on the void arrangement. As a result,
a void volume fraction of approx. 0.2, 0.5, and 0.7 werevarying the spatial arrangement of cylindrical holes and their
manufactured and testéHig. 5). volume fraction, one can design and manufacture voided ma-
Simultaneous independent strain measurements in botierials with tailored Poisson’s ratio between 0 and 1. This
longitudinal and lateral directions were conducted on a tenean find different important engineering applications. For ex-
sile machine using additional extensometers. The average aimple, materials with a high Poisson’s ratio, i.e., close to 1,
two simultaneously measured values on the two sides of thean be used as strain switchers redirecting the deformation
brick was reported. The measurements were conducted in ttegplied to a direction of interest. Those with a low Poisson’s
elastic domain, with a maximal strain below 0.05%. A typi- ratio, close to 0, can almost completely suppress the lateral
cal strain measurement is presented in Fig. 6. responses and can therefore be used in situations where a
The experimental results and their comparison with nu-stringent lateral stability is important.
merical predictions for the Young’s modulus and transverse
Poisson'’s ratio are shown in Fig. 7.
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