MATH 3511

Name: _____

Date: _____

Collaborators:

(If applicable, the collaborators submit their individually written assignments together)

Question:	1	2	3	4	Total
Points:	10	20	25	10	65
Score:					

Instructor/grader comments:

Lagrange interpolation

1. (10 points) (pen and paper problem) Let $\ell_k(x)$ be the Lagrange cardinal polynomial. Explain why for any distribution of *n* nodes and for any *x*

$$\sum_{k=0}^n \ell_k(x) = 1.$$

Barycentric formula

- 2. (pen and paper problem)
 - (a) (10 points) Find the barycentric weights for the nodes: $t_0 = 0$, $t_1 = 1$, $t_2 = 3$.
 - (b) (10 points) Find the interpolating polynomial, p(x) for the data $y_0 = -1$, $y_1 = 1$, $y_2 = -1$ and compute p(2).

Programming

3. (25 points) For the function

$$f(x) = \cosh(\sin(x))$$

compute the polynomial interpolant using n second kind Chebyshev nodes in [-1, 1]

$$x_k = -\cos\left(\frac{k\pi}{n}\right), \quad k = 0, 1, \dots, n.$$

for n = 4, 8, 12, ..., 60. Use the barycentric-formula-based function polyinterp developed in class. For each value of n, compute the infinity-norm error (that is $\max |p(x) - f(x)|$ calculated for at least 4000 values of x). Plot the error as a function of n. Use a suitable coordinate axes.

Describe the behavior of the error vs *n* in the project's README file.

Provide axes labels, a grid, and a title for your graph.

Place the commands clear, clf at the top of your script.

Place the code for this problem into the script named hw04p3.m.

Gitlab

4. (10 points) Create a gitlab project called **hw04** (name it exactly as shown). Upload **all** Matlab files that are needed to run your code.

Scan your answers/solutions of Problems 1 and 2, combine all scans into a single pdf file (call it **hw04.pdf**) and upload it to gitlab. **Do not** upload other types of files (e.g. no graphics files).

Share the project with the instructor and the grader and grant them **Reporter** privileges.