MATH 3511	HW 6	Due: Thu Apr 2, 2020
Name:		
Date:		
Collaborators:		
(Collaborators sub	mit their individually written a	assignments together)

- Do not submit a paper copy (or a scan of it) of your assignment
- Share your gitlab submission with the instructor and the grader
- No late homework will be accepted

Question:	1	2	3	Total
Points:	25	25	10	60
Score:				

Instructor/grader comments:

Interpolating of functions

- 1. (a) (15 points) (pen and paper problem) Find the best linear approximation (in the least squares sense) to the function $\sinh(x)$ on the interval [-1,1]. Write your answer in the README.md file.
 - (b) (10 points) On the same graph plot the function and its approximation. Place the code you wrote for this part of the homework into a matlab file **hw06p1b.m**

Boundary value problem

2. (25 points) Use the shooting method to solve the following boundary value problem:

$$u'' - \frac{3}{x}u' + \frac{4}{x^2}u = 0,$$
 $u(0) = 0,$ $u(2) = 4\log(2).$

Plot the solution and its error as a function of *x*. The exact solution of the BVP is $u(x) = x^2 \log(x)$.

Place the code you wrote for this part of the homework into a matlab file hw06p2.m

Gitlab

3. (10 points) Create a gitlab project called **hw06** (name it exactly as shown). Upload **all** required matlab code and create your README.md file. **Chose a suitable license.** Share the project with the instructor and the grader.