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We use (n) to denote time index, and put it as a superscript to distinguish it from the space
indices j [k, /1. Of course this notation is not raising to a power. Notice in this equation the
second-order derivative in space is naturally centered and symmetric. However, the time
derivative is not centered in time. It is really the value at n + 1/2, not at the time index of
everything else: n. This scheme is therefore Forward in Time, but Centered in Space (FTCS);
see Fig. 5.2. We immediately know from our previous experience that, because it is not
centered in time, this scheme’s accuracy is going to be only first order in At. Also, this
scheme is explicit in time. The g at n + 1 is obtained using only prior (n) values of the other
quantities:
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Figure 5.2 Forward time, centered space (FTCS) difference scheme.

A question then arises as to whether this scheme is stable. For an ordinary differential
equation, we saw that with explicit integration there was a maximum step size that could be
allowed before the scheme became unstable. The same is true for hyperbolic and parabolic
partial differential equations. For stability analysis, we ignore the source S (because we are
really analysing the deviation of the solution ! ). However, even so, it's a bit difficult to see
immediately how to evaluate the amplification factor, because for partial differential
equations there is variation in the spatial dimension(s) that has to be accounted for. It
wasn't present for ordinary differential equations. The way this is generally handled is to
turn the partial differential equation into an ordinary differential equation by examining
separately all the Fourier components of the spatial variation. This sort of analysis is called
Von Neumann stability analysis. It gives a precisely correct answer only for uniform grids
and coefficients, but it is usually approximately correct, and hence in practice very useful
even for non-uniform cases.

A Fourier component varies in space like exp(ikxx) where k, is the wave number in the x-
direction (and i is here the square root of minus 1). For such a Fourier component, y; «
exp(ikx Axj), so that y; +1 = expliky Ax)y; and y; _1 = exp(—iky Ax)y; . Therefore,
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The amplification factor from each step to the next is the square-bracket term. If it has a
magnitude greater than 1, then instability will occur. If D is negative it will in fact be greater
than 1. This instability is not a numerical instability, though. It is a physical instability. The
diffusion coefficient must be positive otherwise the diffusion equation is unstable regardless
of numerical methods. So D must be positive; and so are At, Ax. Therefore, numerical
instability will arise if the magnitude of the second (negative) term in the amplification
factor exceeds 2.

If kx Ax is small, then that will make the second term small and unproblematic. We are most
concerned about larger k, values that can make sin2(k, Ax/2) approximately unity. In fact,
the largest k, value that can be represented on a finite grid 2 is such that the phase
difference (kx Ax) between adjacent values is it radians. That corresponds to a solution that
oscillates in sign between adjacent nodes. For that Fourier component, therefore, sin?(k, Ax/
2) =1.

Stability requires all Fourier modes to be stable, including the worst mode that has sin?(k,
Ax/2) = 1. Therefore, the condition for stability is
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There is, for the FTCS scheme, a maximum stable timestep equal to Ax %/2D.

Incidentally, the fact that At must therefore be no bigger than something proportional to Ax
2 makes the first-order accuracy in time less of a problem. In fact, for a timestep at the
stability limit, as we decrease Ax, improving the spatial accuracy proportional to Ax 2

. because of the second-order accuracy in space, we also improve the temporal accuracy by
the same factor, proportional to Ax 2 because At « Ax 2.



