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Introduction

We are interested in the numerical solution of the initial value problem (IVP)

dy
dt

= f (t,y), a ≤ t ≤ b, y(a) = y0. (1)

We denote the time at the nth time step by tn, the computed solution at the nth time step
by yn,

yn ≡ y(tn), (2)

and the value of the right hand side of Eq. (1) at the nth time step by fn,

fn ≡ f (tn, yn). (3)

The step size h (assumed to be constant for the sake of simplicity) is

h = tn − tn−1. (4)

The error that is induced at every time-step, ε, is referred to as the local truncation error
(LTE) of the method. The local truncation error is different from the global error gn, which is
defined as the absolute value of the difference between the true solution and the computed
solution,

gn =
∣∣∣yexact(tn)− yn

∣∣∣ . (5)

In most cases, we do not know the exact solution and hence cannot evaluate the global
error. However, if we neglect roundoff errors, it is reasonable to assume that the global
error at the nth time step is n times the LTE. Since n is proportional to 1

h , gn should be
proportional to ε

h . A method with ε ∼ hk+1 is said to be of kth order. This implies that for a
kth order method, the global error scales as hk.

Second order Runge-Kutta method

Runge-Kutta (RK) methods is a class of methods that uses the information on the slope at
more than one point to find the solution at the future time step. Let’s derive the second
order RK method where the local truncation error ε ∼ h3.
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Given the IVP of Eq. (1), the time step h, and the solution yn at the nth time step, we wish
to compute yn+1 in the following form:

yn+1 = yn + ahf (tn, yn) + bhf (tn +αh,yn + βh), (6)

where the constants α, β, a, and b have to be selected so that the resulting method has a
local truncation error O(h3).

The Taylor series expansion of y(tn+1) about tn correct up to the h2 term is as following,

y(tn+1) = y(tn + h) = y(tn) + h
dy
dt

∣∣∣∣∣
tn

+
h2

2
d2y

dt2

∣∣∣∣∣∣
tn

+O(h3). (7)

From Eq. (1),
d2y

dt2
=

d
dt

dy
dt

=
d
dt
f (t,y) =

∂f

∂t
+
∂f

∂y

dy
dt

=
∂f

∂t
+ f

∂f

∂y
. (8)

From Eqs. (1), (7), and (8)

yn+1 = yn + hf (tn, yn) +
1
2
h2 ∂f

∂t

∣∣∣∣∣
tn,yn

+
1
2
h2 f (tn, yn)

∂f

∂y

∣∣∣∣∣
tn,yn

+O(h3). (9)

On the other hand, the Taylor series expansion of the expression Eq. (6) about tn correct
up to the h2 term is as following,

yn+1 = yn + (a+ b)hf (tn, yn) + bαh2 ∂f

∂t

∣∣∣∣∣
tn,yn

+ bβ h2 ∂f

∂y

∣∣∣∣∣
tn,yn

+O(h3). (10)

Comparing the terms with identical powers of h in Eqs. (9) and (10), gives us the following
system of equations to determine the constants:

a+ b = 1,

α b =
1
2
, (11)

β b =
1
2
f (tn, yn).

There are infinitely many choices of a, b, α and β which satisfy Eq. (11). If we choose
a = b = 1

2 , α = 1, and β = f (tn, yn) we get the classical second order accurate Runge-Kutta
method (RK2) which is summarized as follows:

k1 = hf (tn, yn),
k2 = hf (tn + h,yn + k1), (12)

yn+1 = yn +
1
2

(k1 + k2).
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If we choose a = 0, b = 1, α = 1
2 , and β = 1

2f (tn, yn) we get the second order accurate
Runge-Kutta method known as midpoint method:

k1 = hf (tn, yn),

k2 = hf (tn +
h
2
, yn +

k1

2
), (13)

yn+1 = yn + k2.

Higher order Runge-Kutta methods

Runge-Kutta methods of higher order can be derived in a similar manner.

yn+1 = yn + h
s∑
i=1

biki , (14)

where ki are given by

k1 = f (tn, yn),
k2 = f (tn + c2h,yn + a21k1),
k3 = f (tn + c3h,yn + a31k1 + a32k2),

...

ks = f (tn + csh,yn +
s−1∑
j=1

asjkj),

(15)

and

ci =
s−1∑
j=1

aij . (16)

The choice of the constants ci , aij and bi uniquely determines a specific Runge-Kutta (RK)
method. A systematical way of presenting those coefficient is called the Butcher’s tableau
(See Table 1).

For example, the two-stage, second-order classical Runge-Kutta methods Eq. (12) is repre-
sented as following:

0
1 1

1
2

1
2
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0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 1: The Butcher tableau for the explicit Runge–Kutta method.

whereas the midpoint method (13) is represented as:

0
1
2

1
2

0 1

For the reference, the fourth order Runge-Kutta method (RK4) is as following:

k1 = hf (tn, yn),

k2 = hf (tn +
h
2
, yn +

k1

2
),

k3 = hf (tn +
h
2
, yn +

k2

2
), (17)

k4 = hf (tn + h,yn + k3),

yn+1 = yn +
1
6

(k1 + 2k2 + 2k3 + k4).

Its Butcher tableau is:
0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6
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