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We are interested in the numerical solution of the initial value problem (IVP):

dy
dt

= f (t,y), a ≤ t ≤ b, y(a) = y0. (1)

We denote the time at the nth time step by tn, the computed solution at the nth time step
by yn,

yn ≡ y(tn), (2)

and the value of the right hand side of Eq. (1) at the nth time step by fn,

fn ≡ f (tn, yn). (3)

The step size h (assumed to be constant for the sake of simplicity) is

h = tn − tn−1. (4)

So far all of the numerical methods that we have developed for solving initial value
problems are one-step methods — they only use the information about the solution at time
tn to approximate the solution at time tn+1 (possibly taking intermediate steps but then
discarding this additional information). Multistep methods attempt to gain efficiency by
keeping and using the information from the previous steps. A method is called linear
multistep method if a linear combination of the values of the computed solution and
possibly its derivative in the previous points are used.
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An example of multistep method is the following expression

yn+1 = yn + h (β0fn+1 + β1fn + β2fn−1 + . . .+ βsfn−s+1) (5)

= yn + h
s∑
i=0

βifn+1−i , (6)

where s is the number of steps in the method. If β0 = 0, the multistep method is said to be
explicit, because then yn+1 can be described using an explicit formula. If β0 , 0, the method
is said to be implicit, because then an equation, generally nonlinear, must be solved to
compute yn+1.

The constants βi satisfy the constraint

s∑
i=0

βi = 1 (7)

originating from the requirement that if f (t,y) = α = const, the correct solution y(t) = αt+C
is produced by the numerical scheme.

A broad category of multistep methods that are called Adams methods involve the integral
form of Eq. (1):

y(tn+1) = y(tn) +

tn+1∫
tn

f (τ,y(τ))dτ. (8)

The general idea behind Adams methods is to approximate the above integral using
polynomial interpolation of f at the points tn+1−s, tn+2−s, . . . , tn if the method is explicit,
and tn+1 as well if the method is implicit.

Explicit Adams methods are called Adams-Bashforth methods. Implicit Adams methods are
known as Adams-Moulton methods.

1 Adams-Bashforth methods

To derive the integration formula for Adams-Bashforth method, we interpolate f at the
points tn+1−s, tn+2−s, . . . , tn with a polynomial of the degree s − 1. We then integrate this
polynomial exactly.

Let’s derive the three-step Adams-Bashforth method with the local truncation error O(h3).
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The interpolating polynomial for f (τ,y(τ)) passing through three points (tn−2, fn−2), (tn−1, fn−1),
and (tn, fn) is as following:

P3(τ) = fn−2Ln−2(τ) + fn−1Ln−1(τ) + fnLn(τ), (9)

where the Lagrange polynomials are

Ln−2(τ) =
(τ − tn−1)(τ − tn)

(tn−2 − tn−1)(tn−2 − tn)
=

1
2h2 (τ − tn−1)(τ − tn),

Ln−1(τ) =
(τ − tn−2)(τ − tn)

(tn−1 − tn−2)(tn−1 − tn)
= − 1

h2 (τ − tn−2)(τ − tn), (10)

Ln(τ) =
(τ − tn−2)(τ − tn−1)
(tn − tn−2)(tn − tn−1)

=
1

2h2 (τ − tn−2)(τ − tn−1).

Substituting Eq. (9) into Eq. (8), we obtain:

yn+1 = yn +

tn+1∫
tn

P3(τ)dτ =

= yn + fn−2

tn+1∫
tn

Ln−2(τ)dτ + fn−1

tn+1∫
tn

Ln−1(τ)dτ + fn

tn+1∫
tn

Ln(τ)dτ.

The integrals in Eq. (11) can be evaluated by introducing a new integration variable

u =
τ − tn
h

, 0 ≤ u ≤ 1, (11)

such that
τ = tn + hu, dτ = hdu, (12)

τ − tn+1 = −h+ hu τ − tn = hu, τ − tn−1 = h+ hu, τ − tn−2 = 2h+ hu. (13)

Lagrange polynomials as the functions of u are,

Ln−2(u) =
1
2
u(u + 1),

Ln−1(u) = −u(u + 2), (14)

Ln(u) =
1
2

(u + 1)(u + 2).
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Integrating, we obtain

tn+1∫
tn

Ln−2(τ)dτ = h

1∫
0

Ln−2(u)du =
h
2

1∫
0

u(u + 1)du =
5

12
h,

tn+1∫
tn

Ln−1(τ)dτ = h

1∫
0

Ln−1(u)du = −h
1∫

0

u(u + 2)du = −4
3
h, (15)

tn+1∫
tn

Ln(τ)dτ = h

1∫
0

Ln(u)du =
h
2

1∫
0

(u + 1)(u + 2)du =
23
12
h.

We conclude that the three-step Adams-Bashforth method is

yn+1 = yn +
h

12
(5fn−2 − 16fn−1 + 23fn) . (16)

Note that the coefficients in Eq. (22) satisfy the constraint Eq. (7).

2 Adams-Moulton methods

The same approach can be used to derive the integration formulas for implicit Adams-
Moulton methods. The resulting interpolating polynomial is of degree one greater than in
the explicit case, so the error in an s-step Adams-Moulton method is O(hs+1), as opposed
to O(hs) for an s-step Adams-Bashforth method.

The interpolating polynomial through (tn−2, fn−2), (tn−1, fn−1), (tn, fn), and (tn+1, fn+1) is as
following:

P4(τ) = fn−2Ln−2(τ) + fn−1Ln−1(τ) + fnLn(τ) + fn+1Ln+1(τ), (17)

where the Lagrange polynomials are

Ln−2(τ) =
(τ − tn−1)(τ − tn)(τ − tn+1)

(tn−2 − tn−1)(tn−2 − tn)(tn−2 − tn+1)
= − 1

6h3 (τ − tn−1)(τ − tn)(τ − tn+1),

Ln−1(τ) =
(τ − tn−2)(τ − tn)(τ − tn+1)

(tn−1 − tn−2)(tn−1 − tn)(tn−1 − tn+1)
=

1
2h3 (τ − tn−2)(τ − tn)(τ − tn+1), (18)

Ln(τ) =
(τ − tn−2)(τ − tn−1)(τ − tn+1)

(tn − tn−2)(tn − tn−1)(tn − tn+1)
= − 1

2h3 (τ − tn−2)(τ − tn−1)(τ − tn+1),

Ln+1(τ) =
(τ − tn−2)(τ − tn−1)(τ − tn)

(tn+1 − tn−2)(tn+1 − tn−1)(tn+1 − tn)
=

1
6h3 (τ − tn−2)(τ − tn−1)(τ − tn).
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yn+1 = yn +

tn+1∫
tn

P4(τ)dτ = (19)

= yn + fn−2

tn+1∫
tn

Ln−2(τ)dτ + fn−1

tn+1∫
tn

Ln−1(τ)dτ + fn

tn+1∫
tn

Ln(τ)dτ + fn+1

tn+1∫
tn

Ln+1(τ)dτ.

Lagrange polynomials as the functions of the variable u Eq. (11) are,

Ln−2(u) =
1
6
u(1−u2),

Ln−1(u) = −1
2
u(u + 2)(1−u), (20)

Ln(u) =
1
2

(u + 2)(1−u2),

Ln+1(u) =
1
6
u(u + 1)(u + 2).

Integrating, we obtain
tn+1∫
tn

Ln−2(τ)dτ = h

1∫
0

Ln−2(u)du =
h
6

1∫
0

u(1−u2)du =
1

24
h,

tn+1∫
tn

Ln−1(τ)dτ = h

1∫
0

Ln−1(u)du = −h
2

1∫
0

u(u + 2)(1−u)du = − 5
24
h, (21)

tn+1∫
tn

Ln(τ)dτ. = h

1∫
0

Ln(u)du =
h
2

1∫
0

(u + 2)(1−u2)du =
19
24
h.

tn+1∫
tn

Ln+1(τ)dτ. = h

1∫
0

Ln+1(u)du =
h
6

1∫
0

u(u + 1)(u + 2)du =
3
8
h.

We conclude that the three-step Adams-Moulton method is

yn+1 = yn +
h

24
(fn−2 − 5fn−1 + 19fn + 9fn+1) . (22)

Note that the coefficients in Eq. (22) satisfy the constraint Eq. (7).
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3 Predictor-corrector method

An Adams-Moulton method can be impractical because, being implicit, it requires solving
nonlinear equations during every time step. An alternative is to pair an Adams-Bashforth
method with an Adams-Moulton method to obtain an Adams-Moulton predictor-corrector
method. Such a method proceeds as follows:

Predict: use the Adams-Bashforth method to compute a first approximation to yn+1, which
we denote by ŷn+1.

Evaluate: evaluate f (tn+1, ŷn+1).

Correct: use the Adams-Moulton method to compute yn+1, but instead of solving an
equation, use f (tn+1, ŷn+1) in place of f (tn+1, yn+1) so that the Adams-Moulton method
can be used as if it was an explicit method.

Evaluate: evaluate f (tn+1, yn+1) to use during the next time step.

4 Conclusions

A drawback of multistep methods is that because they rely on values of the solution
from previous time steps, they cannot be used during the first time steps. Therefore,
it is necessary to use a one-step method, with the same order of accuracy, to compute
enough starting values of the solution to be able to use the multistep method. For example,
to use the three-step Adams-Bashforth method, it is necessary to first use a one-step
method such as the fourth-order Runge-Kutta method to compute y1 and y2, and then the
Adams-Bashforth method can be used to compute y3 using y2, y1 and y0.
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