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Equation of motion: Consider a uniform flexible chain (or heavy rope) of length L, fixed
at the upper end and free at the lower end (see Fig. 1). We let the x axis be vertical,
measured up from the equilibrium position of the free end of the chain. Y (x, t) is the
horizontal displacement of the chain at the point with the vertical coordinate x at time t.
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Figure 1: Hanging chain
(sketched in bold) and the
coordinate axis.

We assume that Y (x, t) is small compared to L. There-
fore we do not need to consider the difference between
distances measured along the chain and distances mea-
sured along the x axis, i.e. we can neglect the terms√
x2 +Y 2 − x ∼ Y 2

x . For the same reason we can neglect
the vertical displacement due to oscillations. We also
assume that the angle α(x) between the local direction of
the chain and X axis is small, thus

sinα ≈ tanα =
∂Y
∂x
. (1)

The horizontal component of the net force acting on a
segment of the chain of length ∆x due to the internal
tension T (x) is (see Fig. 2):

T (x+∆x)
∂Y (x+∆x)

∂x
−T (x)

∂Y (x)
∂x

≈ ∂
∂x

(
T (x)

∂Y
∂x

)
∆x (2)
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Newton’s second law gives the following equation of
motion:

∂
∂x

(
T (x)

∂Y
∂x

)
∆x = ρ∆x

∂2Y

∂t2
, (3)

where ρ is the chain’s linear density (mass per unit length), ρ∆x is the mass of the segment,
and ∂2Y

∂t2
is its acceleration. Canceling common factor ∆x in both sides of Eq. (3), we obtain:

∂
∂x

(
T (x)

∂Y
∂x

)
= ρ

∂2Y

∂t2
. (4)

For small oscillations of the chain, when we can neglect the vertical displacement due
to oscillations, the tension T (x) is the same as for the chain at rest, i.e. the tension at the
point with the vertical coordinate x equals to the weight of the part of the chain below x.
Therefore,

T = ρgx, (5)

where g is the acceleration of gravity.

Y

X

T (x) T (x+∆x)

x x+∆x

Figure 2: Forces acting on the element of the chain.

The chain is fixed at the top, therefore

Y (0, t) = 0. (6)

The displacement of the bottom of the chain remain finite at all times, thus

|Y (L,t)| <∞. (7)

Separation of variables: We solve the partial differential equation Eq. (3) with the
boundary conditions Eqs. (6),(7) separating variables, i.e. assuming that

Y (x, t) = y(x)u(t). (8)
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Substituting Eq. (8) into Eq. (4), we obtain:

u(t)
d

dx

(
T (x)

dy
dx

)
= ρy(x)

d2u

dt2
, (9)

or,
1
y(x)

d
dx

(
T (x)

dy
dx

)
= ρ

1
u(t)

d2u

dt2
. (10)

The right hand side of Eq. (10) is a function of time t. The left hand side is a function of x.
The two sides can be equal at all times and coordinates only if they both are equal to the
same constant.

As we see shortly, this constant must be real and negative. Indeed, the mechanical system
described by Eq. (3) is conservative. Therefore, u(t) cannot grow without a limit or decay
to zero. The permissible solutions are only possible for real negative separation constants.

Denoting the constant by −ω2, we get the following equations:

1
u(t)

d2u

dt2
= −ω2, (11)

1
y(x)

d
dx

(
T (x)

dy
dx

)
= −ρω2. (12)

Equation Eq. (11) can be easily solved:

d2u

dt2
+ω2u(t) = 0, (13)

and
u(t) = Acos(ωt) +Bsin(ωt), (14)

where A and B are real integration constants. We see that ω is the frequency of the chain’s
oscillations.

The equation for the amplitude of the oscillations, y(x), is:

d
dx

(
T (x)

dy
dx

)
+ ρω2 y(x) = 0. (15)

Using the expression for the chain tension, Eq. (5), we obtain:

d
dx

(
x

dy
dx

)
+
ω2

g
y(x) = 0. (16)
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The boundary conditions for Eq. (16) are

y(L) = 0, |y(0)| <∞. (17)

To find the solution of Eq. (16) let’s change the independent variable from x to z as
following:

z = 2

√
ω2

g
x . (18)

dz
dx

=

√
ω2

g x
−→

dy
dx

=
dy
dz

dz
dx

=

√
ω2

g x

dy
dz

−→ x
dy
dx

=

√
ω2

g
x

dy
dz

=
z
2

dy
dz
, (19)

d
dx

(
x

dy
dx

)
=

d
dz

(
z
2

dy
dz

)
dz
dx

=
1
2

√
ω2

g x
d
dz

(
z

dy
dz

)
(20)

Equation (16) changes to

1
2

√
ω2

g x
d
dz

(
z

dy
dz

)
+
ω2

g
y = 0, (21)

or
d
dz

(
z

dy
dz

)
+ zy = 0. (22)

Expanding the derivative, we obtain

z
d2y

dz2 +
dy
dz

+ zy = 0. (23)

Equation (23) is zero order Bessel equation. The solution that satisfies the boundary
conditions Eq. (17) is

y(x) = J0(z) = J0

(
2ω

√
x
g

)
. (24)

The condition that the top end of the chain is fixed, y(L) = 0, determines the characteristic
frequencies of the chain:

J0

(
2ω

√
L
g

)
= 0. (25)

ωn =
1
2

√
g

L
zn, (26)
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where zn are the zeros of Bessel function J0. For the reference,

z1 ≈ 2.4, z2 ≈ 5.5, z3 ≈ 8.7, . . . (27)

The normal modes of the hanging chain are

yn(x) = J0

(
zn

√
x
L

)
. (28)

The first three lowest-frequency modes are sketched in Fig. 3.
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Figure 3: Normal modes of a hanging chain.
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