2.8 Effect of Roundoff Errors

The rounding errors introduced during the solution of a linear system of equations
almost always cause the computed solution—which we now denote by z,—to differ
somewhat from the theoretical solution £ = A~'b. In fact, if the elements of

are not floating-point numbers, then z, cannot equal . There are two common
measures of the discrepancy in z.: the error,

€= & — Ty,
and the residual,
r==b-— Az,.

Matrix theory tells us that, because A is nonsingular, if one of these is zero, the
other must also be zero. But they are not necessarily hoth “small” at the same
time. Consider the following example:

0.780 0.563 r ) (0217
0.913 0.659 x2 ) T \0.254 )"
What happens if we carry out Gaussian elimination with partial pivoting on a

hypothetical three-digit decimal computer? First, the two rows (equations) are
interchanged so that 0.913 becomes the pivot. Then the multiplier

0.780
913 = 0.854 (to three places)

is computed. Next, 0.854 times the new first row is subtracted from the new second
row to produce the system

0.913 0.659 1y _ [0.254
0 0.001 z2 ) 7 0001 )¢

Finally, the back substitution is carried out:

0.001
2o = i 1.00 (exactly),
~0.254 — 06592,
“ 0.013

= —0.443 (to three places).
Thus the computed solution is
= —0.443
*T\ 1000 /-

To assess the accuracy without knowing the exact answer, we compute the residuals
(exactly):

b Ap, = (0.217 — ((0.780)(—0.443) + (0563)(1.00)))

0.254 — ((0.913)(—0.443) + (0.659)(1.00))

[ —0.000460
=\ -0.000541 /)
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The residuals are less than 10~%. We could hardly expect better on a three-digit
machine. However, it is easy to see that the exact solution to this system is

v = ( 1.000 )
-1.000 /-
So the components of our computed solution actually have the wrong signs; the
error is larger than the solution itself.

Were the small residuals just a lucky fluke? You should realize that this
example is highly contrived. The matrix is very close to being singular and is not
typical of most problems encountered in practice. Nevertheless, let us track down
the reason for the small residuals.

If Gaussian elimination with partial pivoting is carried out for this example on
a computer with six or more digits, the forward elimination will produce a system

something like
0.913000  0.659000 zy ) _ [ 0.254000
0 ~-0.000001 x5 ) \0.000001 /-

Notice that the sign of Uy 5 differs from that obtained with three-digit computation.
Now the back substitution produces

0.000001
Lo = m w w].OOOOO,
S 0.254 — 0.65925
T 0.913
= 1.00000,

the exact answer. On our three-digit machine, 25 was computed by dividing two
quantities, both of which were on the order of rounding errors and one of which did
not even have the correct sign. Hence 22 can turn out to be almost anything. Then
this arbitrary value of zp was substituted into the first equation to obtain ;.

We can reasonably expect the residual from the first equation to be small—
z1 was computed in such a way as to make this certain. Now comes a subtle but
crucial point. We can also expect the residual from the second equation to be small,
precisely because the matriz is so close to being singular. The two equations are very
nearly multiples of one another, so any pair (z1,z3) that nearly satisfies the first
equation will also nearly satisfy the second. If the matrix were known to be exactly
singular, we would not need the second equation at all—any solution of the first
would automatically satisfy the second.

In Figure 2.1, the exact solution is marked with a circle and the computed
solution with an asterisk. Even though the computed solution is far from the exact
intersection, it is close to both lines because they are nearly parallel.

Although this example is contrived and atypical, the conclusion we reached
is not. It is probably the single most important fact that we have learned about
matrix computation since the invention of the digital computer:

Gaussian elimination with partial pivoting is guaranteed to produce small
residuals.
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1t

5

-1.5 -1 -0.5

Figure 2.1. The computed solution, marked by an asterisk, shows a large
error, but a small residual.

Now that we have stated it so strongly, we must make a couple of qualifying
remarks. By “guaranteed” we mean it is possible to prove a precise theorem that
assumes certain technical details about how the floating-point arithmetic system
works and that establishes certain inequalities that the components of the residual
must satisfy. If the arithmetic units work some other way or if there is a bug in
the particular program, then the “guarantee” is void. Furthermore, by “small” we
mean on the order of roundoff error relative fo three quantities: the size of the
clements of the original coefficient matrix, the size of the elements of the coefficient
matrix at intermediate steps of the elimination process, and the size of the elements
of the computed solution. If any of these are “large,” then the residual will not
necessarily be small in an absolute sense. Finally, even if the residual is small, we
have made no claims that the error will be small. The relationship between the size
of the residual and the size of the error is determined in part by a quantity known
as the condition number of the matrix, which is the subject of the next section.

2.9 Norms and Condition Numbers

The coefficients in the matrix and right-hand side of a system of simultancous linear
equations are rarely known exactly. Some systems arise from experiments, and so
the coefficients are subject to observational errors. Other systems have cocflicients
given by formulas that involve roundoff error in their evaluation. Even if the system
can be stored exactly in the computer, it is almost inevitable that roundoff errors
will be introduced during its solution. It can be shown that roundoff errors in
Gaussian elimination have the same effect on the answer as errors in the original
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coeflicients.

Consequently, we are led to a fundamental question. If perturbations are made
in the coefficients of a system of linear equations, how much is the solution altered?
In other words, if Az = b, how can we measure the sensitivity of z to changes in A4
and b7

The answer to this question lies in making the idea of nearly singular precise.
If A is a singular matrix, then for some b’s a solution 2 will not exist, while for
others it will not be unique. So if A is nearly singular, we can expect small changes
in A and b to cause very large changes in z. On the other hand, if A is the identity
matrix, then b and = are the same vector. So if A is nearly the identity, small
changes in A and b should result in correspondingly small changes in z.

At first glance, it might appear that there is some connection between the size
of the pivots encountered in Gaussian elimination with partial pivoting and nearness
to singularity, because if the arithmetic could be done exactly, all the pivots would
be nonzero if and only if the matrix is nonsingular. To some extent, it is also true
that if the pivots are small, then the matrix is close to singular. However, when
roundoff errors are encountered, the converse is no longer true—a matrix might be
close to singular even though none of the pivots are small.

To get a more precise, and reliable, measure of nearness to singularity than
the size of the pivots, we need to introduce the concept of a norm of & vector. This
is a single number that measures the general size of the elements of the vector.
The family of vector norms known as [, depends on a parameter p in the range
I<p<oo

n 1/p
p= Z il

fz=l

[l]

We almost always use p=1, p= 2, or limp — oc:

lell = Yl

n 1/2

Z 1Ii]2 3

i=1

fll2
llloo = mlax]xil‘

The l;-norm is also known as the Manhaitan norm because it corresponds to the
distance traveled on a grid of city streets. The ly-norm is the familiar Euclidean
distance. The lo-norm is also known as the Chebyshev norm.

The particular value of p is often unimportant and we simply use fzl]. Al
vector norms have the following basic properties associated with the notion of dis-
tance:

flzlf > 0 if z 50,
ol =,
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lexll = |c|ljz] for all scalars c,

flz -+ yll < llzll + flvl] (the triangle inequality).

In MATLAB, |lz}l, is computed by norm(x,p), and norm(x) is the same as
norm(x,2). For example,

x = (1:4)/5

norml = norm(x,1)
norm2 = norm(x)
norminf = norm(x,inf)

produces

x =
0.2000 0.4000 0.6000 0.8000

norml =
2.0000

norm2 =
1.0964

norminf =
0.8000

Multiplication of a vector by a matrix A results in a new vector Az that can
have a very different norm from z. This change in norm is directly related to the
sensitivity we want to measure. The range of the possible change can be expressed
by two numbers:

1 = max LAzl
M = mas =l
M = min [Az]
=l

The max and min are taken over all nonzero vectors z. Note that if A is singular,
then m = 0. The ratioc M/m is called the condition number of A:

max Al

_ Tz]

T Az
M EIIH

The actual numerical value of k(A) depends on the vector norm being used,
but we are usually only interested in order of magnitude estimates of the condition
number, so the particular norm is usually not very important.

Consider a system of equations

Az =1b
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and a second system obtained by altering the right-hand side:
Az + 6x) = b+ 8b.

We think of db as being the error in b and z as being the resulting error in z,
although we need not make any assumptions that the errors are small. Because
A(dx) = &b, the definitions of M and m immediately lead to

bl < Mifl]
and
ll6b]] = mijsxf).
Consequently, if m 3 0,
NI
fzll ol

The quantity [|8b]l/||b]l is the relative change in the right-hand side, and the quantity
ll6z]|/lllf is the relative error caused by this change. The advantage of using relative
changes is that they are dimensionless, that is, they are not affected by overall scale
factors.

This shows that the condition number is a relative error magnification factor.
Changes in the right-hand side can cause changes k(A) times as large in the solution.
It turns out that the same is true of changes in the coefficient matrix itself.

The condition number is also a measure of nearness to singularity. Although
we have not yet developed the mathematical tools necessary to make the idea pre-
cise, the condition number can be thought of as the reciprocal of the relative distance
from the matrix to the set of singular matrices. So, if k(A) is large, 4 is close to
singular.

Some of the basic properties of the condition number are ecasily derived.
Clearly, M > m, and so

K(A) > 1.
If P is a permutation matrix, then the components of Pz arc simply a rearrangement
of the components of z. It follows that || Pz|| = ||z|| for all z, and so

K(P)=1.

In particular, k(1) = 1. If A is multiplied by a scalar ¢, then M and m are both
multiplied by the same scalar, and so

t{cA) = k(A).
If D is a diagonal matrix, then

_ max |dy|

=
EiN
)

" min|dy]

These last two properties are two of the reasons that k(A) is a better measure of
nearness to singularity than the determinant of A. As an extreme example, consider
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a 100-by-100 diagonal matrix with 0.1 on the diagonal. Then det(A4) = 10199,

which is usually regarded as a small number. But x(A4) = 1, and the components of

Az are simply 0.1 times the corresponding components of z. For linear systems of

equations, such a matrix behaves more like the identity than like a singular matrix.
The following example uses the l;-norm:

41 28
A‘(Q.? 6:6)’
4.1
'=(s7):

T = !
v={,)

o =138, Jaf =1.

Clearly, Az = b, and

If the right-hand side is changed to

P <4.11

3

9.70

R

the solution becomes

z

0.34
9

il
P
&
hoe]
~——

Let 6b = b~ b and 62 = z — # Then

fl6]] = 0.01,
6z = 1.63.

We have made a fairly small perturbation in b that completely changes z. In fact,
the relative changes are

lléoll _

] = 0.0007246,
6zl _ . ¢
T

Because k({A) is the maximum magnification factor,

1.63
<(A) > e = 22409 4,
~A) 2 5 o00ma0
We have actually chosen the b and 6b that give the maximum, and so, for this
example with the {y-norm,
K{A) = 22494

It is important to realize that this example is concerned with the ezact so-
lutions to two slightly different systems of equations and that the method used to
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obtain the solutions is irrelevant. The example is constructed to have a fairly large
condition number so that the effect of changes in & is quite pronounced, but similar
behavior can be expected in any problem with a large condition number.

The condition number also plays a fundamental role in the analysis of the
roundoff errors introduced during the solution by Gaussian elimination. Let us
assume that A and b have elements that are exact floating-point numbers, and let
z. be the vector of floating-point numbers obtained from a linear equation solver
such as the function we shall present in the next section. We also assume that exact
singularity is not detected and that there are no underflows or overflows. Then it
is possible to establish the following inequalities:

o= de _

Al =7
o=l
e < e

Here € is the relative machine precision eps and p is defined more carefully later,
but it usually has a value no larger than about 10.

The first inequality says that the relative residual can usually be expected to
be about the size of roundoff error, no matter how badly conditioned the matrix is.
‘This was illustrated by the example in the previous section. The second inequality
requires that A be nonsingular and involves the exact solution z. Tt follows directly
from the first inequality and the definition of k(A) and says that the relative error
will also be small if x(A) is small but might be quite large if the matrix is nearly
singular. In the extreme case where A is singular but the singularity is not detected,
the first inequality still holds but the second has no meaning.

To be more precise about the quantity p, it is necessary to introduce the idea
of a matriz norm and establish some further inequalities. Readers who are not
interested in such details can skip the remainder of this section. The quantity M
defined earlier is known as the norm of the matrix. The notation for the matrix
norm is the same as for the vector norm:

IA]l = max M
fll
It is not hard to see that A7 || = 1/m, so an equivalent definition of the condition
number is
K(A) = A4

Again, the actual numerical values of the matrix norm and condition number
depend on the underlying vector norm. It is easy to compute the matrix norms
corresponding to the [; and [, vector norms. In fact, it is not hard to show that

1Al = mjaxz lai 51,
Al = Inlaxz lai 4.
j
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Computing the matrix norm corresponding to the Iy vector norm involves the sin-
gular value decomposition (SVD), which is discussed in a later chapter. MATLAB
computes matrix norms with norm(A,p) forp = 1, 2, or inf.

The basic result in the study of roundoff error in Gaussian elimination is due
to J. H. Wilkinson. He proved that the computed solution z, exactly satisfies

(A+ E)z, =b,

where I is a matrix whose elements are about the size of roundoff errors in the
elements of A. There are some rare situations where the intermediate matrices
obtained during Gaussian elimination have elements that are larger than those of
A, and there is some effect from accumulation of rounding errors in large matrices,
but it can be expected that if p is defined by

IE _
Ay T

then p will rarely be bigger than about 10.
From this basic result, we can immediately derive inequalities involving the
residual and the error in the computed solution. The residual is given by

b— Az, = Fz,,

and hence
o= Az, || = | Ea.|| < [ Elllfz.]].

The residual involves the product Az., so it is appropriate to consider the relative
residual, which compares the norm of b — Az to the norms of 4 and z,. It follows
directly from the above inequalities that

b= Aed] _
ATl ="

If A is nonsingular, the error can be expressed using the inverse of A by
z =z, = A7Hb — Az,),

and so
o = .|l < AT I Bl

It is simplest to compare the norm of the error with the norm of the computed
solution. Thus the relative error satisfies

B—H‘—H—“ < plAIIA™ e
Hence
e - 2.
A

pr(Ale.
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The actual computation of x(A) requires knowing ||A~!||. But computing A~!
requires roughly three times as much work as solving a single linear system. Com-
puting the [; condition number requires the SVD and even more work. Fortunately,

the exact value of k(A) is rarely required. Any reasonably good estimate of it is
satisfactory.

MATLAB has several functions for computing or estimating condition numbers.

s cond(A) or cond(A,2) computes kz(A). Uses svd(4). Suitable for smaller
matrices where the geometric properties of the l3-norm are important.

e cond(A,1) computes k1(A4). Uses inv(L). Less work than cond(4,2).
e cond(A,inf} computes Koo (A). Uses inv(A). Same as cond(A’,1).

s condest(A) estimates #1{A). Uses 1u(A) and a recent algorithm of Higham
and Tisseur [9]. Especially suitable for large, sparse matrices.

¢ rcond(A) estimates 1/k;(A4). Uses 1u(A) and an older algorithm developed
by the LINPACK and LAPACK projects. Primarily of historical interest.



