PHYS 3102	HW 6	Due: Mon Apr 27, 2020	
Name:			
Date:			
Collaborators:			

(Collaborators submit their individually written assignments together)

Question:	1	2	Total
Points:	40	40	80
Score:			

Instructor/grader comments:

- 1. (40 points) A vertical pipe is filled with a viscous incompressible fluid with the density ρ and viscosity ν . A long light cylinder (its density is much less than ρ) of radius R and length L, ($L \gg R$) is immersed co-axially into the pipe so that only a small gap of width $h \ll R$ is formed between their lateral surfaces. Find the terminal velocity of the cylinder.
- 2. (40 points) A heavy viscous fluid flows down a vertical wall under the influence of gravity. Assuming that initially the fluid was spread uniformly over the wall (up to a finite height), find the thickness of the film of the fluid, δ , as a function time and the height: $\delta = \delta(x, t)$. Consider the limit of large times when $\delta(x, t) = f(x) T(t)$.