Name: _____

Date: _____

Collaborators:

(Collaborators submit their individually written assignments together)

Question:	1	2	3	4	Total
Points:	15	15	15	25	70
Score:					

Instructor/grader comments:

1. (15 points) I've watched the video recording of the R. Feynman's lecture assigned as a part of the homework.

Sign and date here:

2. (15 points) Calculate the strain tensor for the displacement field

$$\vec{\mathbf{u}} = (Ax_1 + Cx_2, Cx_1 - Bx_2, 0),$$

where A, B, C are (small) constants. Under what conditions the volume is unchanged?

3. (15 points) A displacement field is given by

$$u_{1} = \alpha(x_{1} + 2x_{2}) + \beta x_{1}^{2}$$

$$u_{2} = \alpha(x_{2} + 2x_{3}) + \beta x_{2}^{2}$$

$$u_{3} = \alpha(x_{3} + 2x_{1}) + \beta x_{3}^{2}.$$

where α and β are small. Calculate the strain tensor.

- 4. An (fictional) elevator to the center of the Earth can be created if it becomes technically feasible to dig a tunnel and lower a line to the Earth center. Assume that (i) the line is unstretchable and has constant cross-section *A* and constant density ρ , (ii) the Earth is an ideal uniform sphere. Assume that you know the radius of the Earth *R* and the acceleration of the gravity at the surface of the Earth *g*. Neglect the influence by the Earth rotation.
 - (a) (15 points) Calculate tension in the line, $\sigma(r)$. Find the maximal tension.
 - (b) (10 points) Estimate the numerical value of the ratio of maximal tension to line's density. Compare with the tensile strength (breaking tension) for steel: $\sigma_t \approx 4 \times 10^6$ Pa, $\rho \approx 8 \times 10^3$ kg/m³.