12.30. Maximum mass

The energy of the resulting particle is E. Let its mass be M and its momentum be p_t . Then the very important relation gives $E^2 = p_t^2 + M^2$. Since E is given, M is maximum when $p_t = 0$. That is, the initial momenta are equal and opposite. Call them p. Then the sum of the energies of the photon and initial mass is

$$E = p + \sqrt{p^2 + m^2} \implies (E - p)^2 = p^2 + m^2 \implies p = \frac{E^2 - m^2}{2E}$$
. (696)

The energy of the photon is therefore

$$E_{\gamma} = p = \frac{E^2 - m^2}{2E} \longrightarrow \frac{E^2 - m^2 c^4}{2E}$$
. (697)

The energy of the mass is then

$$E_m = E - E_{\gamma} = \frac{E^2 + m^2 c^4}{2E} \,. \tag{698}$$

If $m\approx 0$, then $E_{\gamma}\approx E_m\approx E/2$ (we essentially have two photons). If $m\approx E/c^2$, then $E_{\gamma}\approx 0$ and $E_m\approx E$ (both momenta are small).

12.31. Equal angles

Conservation of p_y says that the y components of the two final momenta are equal and opposite. The equality of the two angles then implies that the p_x components are equal. Conservation of p_x then says that both p_x 's are equal to E/2. Both momenta therefore have magnitude $E/(2\cos\theta)$.

Conservation of energy gives the final energy of m as $E_m = E + m - E/(2\cos\theta)$. The very important relation applied to m then gives

12.32. Pion-muon race

We are given $\gamma mc^2=10$ GeV for both particles. Using $m_\pi c^2\approx 137$ MeV and $m_\mu c^2\approx 105.7$ MeV, we find $\gamma_\pi\approx 73.0$ and $\gamma_\mu\approx 94.6$. Now,

$$\gamma \equiv 1/\sqrt{1 - v^2/c^2} \implies v = c\sqrt{1 - 1/\gamma^2} \approx c(1 - 1/2\gamma^2),$$
 (700)

for reasonably large γ . The difference in the two speeds is therefore $\Delta v \approx c(1/2\gamma_\pi^2-1/2\gamma_\mu^2)$. The total time is essentially $t\approx (100\,\mathrm{m})/c$, so the distance the pion lags behind the muon after this time is

$$\Delta d = t \Delta v \approx \frac{100\,\mathrm{m}}{c} \cdot c \left(\frac{1}{2(73.0)^2} - \frac{1}{2(94.6)^2} \right) \approx 3.8 \cdot 10^{-3}\,\mathrm{m} = 3.8\,\mathrm{mm}. \tag{701}$$