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of M ’s momentum as (4/3)mc and −E/c, respectively. The very important relation
for M then yields (dropping the c’s)(

(8/3)m− E
)2

=
(
(4m/3)2 + E2

)
+ M2

=⇒ M =
√

(16/3)m(m− E)

→
√

(16/3)m(m− E/c2). (693)

We must therefore have E ≤ mc2 for this setup to be possible. In the limit E → 0,
we have M = 4m/

√
3. This is just the result for a 1-D collision in which the two

m’s combine to form a mass M , as you can show.

12.29. Decay into photons

Let E be the energy of the bottom photon. Then conservation of energy gives
the energy of the top photon as γm − E. And conservation of px and py give the
components of its momentum as γmv and E, respectively. Since E2 = p2 for a
photon, we have

(γm−E)2 = (γmv)2 + E2 =⇒ γ2m2(1− v2) = 2γmE =⇒ E = m/2γ. (694)

We want

py

px
=

1

2
=⇒ m/2γ

γmv
=

1

2
=⇒ 1

γ2
= v =⇒ v2 + v − 1 = 0 (695)

Putting the c’s back in, we find v/c = (−1 +
√

5)/2 (the other root is smaller than
−1).

12.30. Maximum mass

The energy of the resulting particle is E. Let its mass be M and its momentum be
pf . Then the very important relation gives E2 = p2

f + M2. Since E is given, M is
maximum when pf = 0. That is, the initial momenta are equal and opposite. Call
them p. Then the sum of the energies of the photon and initial mass is

E = p +
√

p2 + m2 =⇒ (E − p)2 = p2 + m2 =⇒ p =
E2 −m2

2E
. (696)

The energy of the photon is therefore

Eγ = p =
E2 −m2

2E
−→ E2 −m2c4

2E
. (697)

The energy of the mass is then

Em = E − Eγ =
E2 + m2c4

2E
. (698)

If m ≈ 0, then Eγ ≈ Em ≈ E/2 (we essentially have two photons). If m ≈ E/c2,
then Eγ ≈ 0 and Em ≈ E (both momenta are small).

12.31. Equal angles

Conservation of py says that the y components of the two final momenta are equal
and opposite. The equality of the two angles then implies that the px components
are equal. Conservation of px then says that both px’s are equal to E/2. Both
momenta therefore have magnitude E/(2 cos θ).

Conservation of energy gives the final energy of m as Em = E + m − E/(2 cos θ).
The very important relation applied to m then gives(

E + m− E

2 cos θ

)2

=
(

E

2 cos θ

)2

+ m2 =⇒ cos θ =
E + m

E + 2m
−→ E + mc2

E + 2mc2
.

(699)
In the limit E ¿ mc2, we have cos θ ≈ 1/2 =⇒ θ ≈ 60◦ (not obvious). In the limit
E À mc2, we have cos θ ≈ 1 =⇒ θ ≈ 0◦. 153

12.32. Pion-muon race

We are given γmc2 = 10 GeV for both particles. Using mπc2 ≈ 137 MeV and
mµc2 ≈ 105.7 MeV, we find γπ ≈ 73.0 and γµ ≈ 94.6. Now,

γ ≡ 1/
√

1− v2/c2 =⇒ v = c
√

1− 1/γ2 ≈ c(1− 1/2γ2), (700)

for reasonably large γ. The difference in the two speeds is therefore ∆v ≈ c(1/2γ2
π−

1/2γ2
µ). The total time is essentially t ≈ (100m)/c, so the distance the pion lags

behind the muon after this time is

∆d = t∆v ≈ 100m

c
· c

(
1

2(73.0)2
− 1

2(94.6)2

)
≈ 3.8 · 10−3 m = 3.8mm. (701)

12.33. Higgs production

(a) Let the proton mass be m and the Higgs mass be km, where k ≈ 100 here. If
the incoming proton has energy E, then the total energy and momentum are
E + m and

√
E2 −m2, respectively. So the very important relation applied to

the Higgs gives

(E + m)2 = (E2 −m2) + (km)2 =⇒ E = (k2/2− 1)m. (702)

The amount of energy that must be added to the rest energy of the incoming
proton is therefore ∆E = (k2/2 − 2)m. Note that ∆E = 0 if k = 2, as
expected. Note also that ∆E behaves quadratically with k. If k ≈ 100, then
∆E ≈ 5000 mc2 ≈ 5000 GeV.

(b) The Higgs has zero momentum in this case, so each proton must simply have
an energy km/2 to make a total energy of km. The amount of energy that
must be added to the two rest energies is therefore ∆E = (k − 2)m. Again,
∆E = 0 if k = 2, as expected. But note that ∆E now behaves linearly with
k. If k ≈ 100, then ∆E ≈ 100 mc2 ≈ 100 GeV. We see that a much smaller
amount of energy is required for the creation of a heavy particle if the two
initial particles have equal and opposite momenta. This way the final particle
has no wasted kinetic energy.

12.34. Maximum energy

(a) We have

(PM − Pm)2 = P 2
µ =⇒ M2 + m2 − 2PM · Pm = E2

µ − p2
µ. (703)

Since M is initially at rest, we have PM ·Pm = MEm. The quantity E2
µ−p2

µ is
an invariant, so in particular it equals the square of the energy (call it Eµ,CM)
in the CM frame, where the momentum is zero. Therefore, Eq. (703) gives
Em = (M2 + m2 − E2

µ,CM)/2M . So to maximize Em, we want to minimize
Eµ,CM. But the minimum energy in the CM frame is µ (or µc2, with the c’s),
and it is achieved when all the particles are at rest; any nonzero motion would
add kinetic energy to this µc2. (If the particles are at rest in the CM frame,
this means that they simply form a blob in any other frame.) The maximum
Em is therefore

Emax
m =

M2 + m2 − µ2

2M
. (704)

(b) If m represents the electron, and if µ represents the proton and the neutrino,
then from Eq. (704), the maximum energy that the electron can have is (in
MeV)

(939.6)2 + (0.5)2 − (938.3 + 0)2

2(939.6)
≈ 1.3. (705)


