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Running away
In A’s frame, the mark on the ground starts a distance (4/5)L away from A and
moves toward her at speed 3¢/5. So the time this takes is (4L/5)/(3¢/5) = 4L/3c.
In A’s frame, B’s speed is . .

3e | 3c =
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So B travels a distance (15¢/17)(4L/3c) = (20/17)L by the time the mark reaches
A. If we work with a general v instead of 3¢/5, the answer to the problem is
2L/(y(1 + v?)). Note that this is less than 2L /7, so B has not yet reached a mark
at —L at this time.

Angled photon
Using v}, = ccosf and v;, = csin, the velocity-addition formulas give the velocity
components in S as

v+ ccos 6 csin 6

= TF (/e cosd’ and vy = m . (633)
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So we have
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System of particles

Let the CM move with velocity v with respect to the lab frame. Then the Lorentz
transformation for the total momentum is pSyh = ~, (PP, — (v/c?)ERP)). The
minus sign here is due to the fact that the CM frame sees the lab frame move with
velocity —v. Using pSity = 0, we find v/c? = pi2b, /EP . This takes exactly the
same form as the familiar v/c2 = p/E expression for one particle.

If we have general 3-D motion, then we can use the above reasoning with a Lorentz
transformation in the z direction to show that the  component of the velocity of
the CM is given by v, /c? = pl*by .1 /B0, Likewise for v, and v.. (Alternatively, if
you want to, you can first transform to a frame where p, is zero, and then transform
from this frame to another one where p, is zero (keeping p, zero), and then finally
transform from this frame to another one where p. is zero (keeping p, and p, zero).
You can show that the result will be a frame moving with respect to the original lab
frame with the above v,, vy, and v..)

Another perpendicular photon

The initial energy and momentum of the system are (5/3)mc?+mec* = (8/3)mc? and
(5/3)m(4c/5) = (4/3)mc, respectively. Conservation of energy then gives the energy
of M as By = (8/3)mc® — E. And conservation of p, and p, give the components
of M’s momentum as (4/3)mc and —E/c, respectively. The very important relation
for M then yields (dropping the c’s)

(8/3)m—EB)" = ((4m/3)*+E?) + M*
— M = =B
~ EBmn = B, (699)
We must therefore have E < mc? for this setup to be possible. In the limit E — 0,

we have M = 4m/\/‘3. This is just the result for a 1-D collision in which the two
m’s combine to form a mass M, as you can show.



12.33. Higgs production

(a) Let the proton mass be m and the Higgs mass be km, where k ~ 100 here. If

the incoming proton has energy E, then the total energy and momentum are
E +m and vVE? —m?, respectively. So the very important relation applied to
the Higgs gives

(E+m)*=(E* —m®) + (km)? = E=(k*/2—1)m. (702)

The amount of energy that must be added to the rest energy of the incoming
proton is therefore AE = (k?/2 — 2)m. Note that AE = 0 if k = 2, as
expected. Note also that AE behaves quadratically with k. If k& =~ 100, then
AE = 5000 mc? = 5000 GeV.

The Higgs has zero momentum in this case, so each proton must simply have
an energy km/2 to make a total energy of km. The amount of energy that
must be added to the two rest energies is therefore AE = (k — 2)m. Again,
AE = 0if k = 2, as expected. But note that AE now behaves linearly with
k. If k ~ 100, then AE =~ 100mc? ~ 100 GeV. We see that a much smaller
amount of energy is required for the creation of a heavy particle if the two
initial particles have equal and opposite momenta. This way the final particle
has no wasted kinetic energy.



