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11.52. Running away

In A’s frame, the mark on the ground starts a distance (4/5)L away from A and
moves toward her at speed 3c/5. So the time this takes is (4L/5)/(3c/5) = 4L/3c.
In A’s frame, B’s speed is

V =
3c
5

+ 3c
5

1 +
(

3
5

)2
=

15c

17
. (632)

So B travels a distance (15c/17)(4L/3c) = (20/17)L by the time the mark reaches
A. If we work with a general v instead of 3c/5, the answer to the problem is
2L/(γ(1 + v2)). Note that this is less than 2L/γ, so B has not yet reached a mark
at −L at this time.

11.53. Angled photon

Using v′x = c cos θ and v′y = c sin θ, the velocity-addition formulas give the velocity
components in S as

vx =
v + c cos θ

1 + (v/c) cos θ
, and vy =

c sin θ

γv

(
1 + (v/c) cos θ

) . (633)

So we have

v2
x + v2

y =

(
v + c cos θ

1 + (v/c) cos θ

)2

+

(
v + c sin θ

γv

(
1 + (v/c) cos θ

))2

=
c2

(c + v cos θ)2

(
(v + c cos θ)2 +

(
1− v2

c2

)
(c sin θ)2

)
=

c2

(c + v cos θ)2

(
v2(1− sin2 θ) + 2vc cos θ + c2(cos2 θ + sin2 θ)

)
=

c2

(c + v cos θ)2

(
v2 cos2 θ + 2vc cos θ + c2

)
= c2. (634)

11.54. Running on a train

(a) The speed of the person, as viewed by someone on the ground, is (v1 +v2)/(1+
v1v2). So the relative speed of the person and the front of the train, as viewed
by the ground, is

v1 + v2

1 + v1v2
− v1 =

v2(1− v2
1)

1 + v1v2
. (635)

The initial separation, in the ground frame, between the person and the front
of the train is L/γ1. So the time it takes the person to close this gap is

t =
L
√

1− v2
1

v2(1− v2
1)/(1 + v1v2)

=
L(1 + v1v2)

v2

√
1− v2

1

=
γ1L(1 + v1v2)

v2
. (636)

(b) In the person’s frame, the train has length L/γ2, and it moves with speed v2.
So the time on the person’s clock is L/(γ2v2). (Alternatively, the time in the
train frame is simply L/v2, but the train sees the person’s clock run slow by
γ2.) The γ factor between the person and the ground is

γ =
1√

1−
(

v1+v2
1+v1v2

)2
=

1 + v1v2√
(1− v2

1)(1− v2
2)

= γ1γ2(1 + v1v2). (637)

So time dilation gives the time in the ground frame as

γ1γ2(1 + v1v2)
(

L

γ2v2

)
=

γ1L(1 + v1v2)

v2
. (638)
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12.20. Energy of two masses

The total energy in the original frame is 2γV Mc2. In the new frame, the γ factors
associated with the relativistic addition and subtraction of u from V are γuγV (1±
uV ), from Eq. (12.24). So the total energy in the new frame is

E = γuγV (1 + uV )Mc2 + γuγV (1− uV )Mc2 = γu(2γV Mc2). (678)

The energy is therefore larger in the new frame by a factor γu.

12.21. System of particles

Let the CM move with velocity v with respect to the lab frame. Then the Lorentz
transformation for the total momentum is pCM

total = γv(plab
total − (v/c2)Elab

total). The
minus sign here is due to the fact that the CM frame sees the lab frame move with
velocity −v. Using pCM

total = 0, we find v/c2 = plab
total/Elab

total. This takes exactly the
same form as the familiar v/c2 = p/E expression for one particle.

If we have general 3-D motion, then we can use the above reasoning with a Lorentz
transformation in the x direction to show that the x component of the velocity of
the CM is given by vx/c2 = plab

x,total/Elab
total. Likewise for vy and vz. (Alternatively, if

you want to, you can first transform to a frame where px is zero, and then transform
from this frame to another one where py is zero (keeping px zero), and then finally
transform from this frame to another one where pz is zero (keeping px and py zero).
You can show that the result will be a frame moving with respect to the original lab
frame with the above vx, vy, and vz.)

12.22. CM frame

(a) Let the moving and stationary masses be labeled 1 and 2, respectively. Then

E1 = γ3/5mc2 = (5/4)mc2, p1 = γ3/5m(3c/5) = (3/4)mc,

E2 = γ0mc2 = mc2, p2 = 0. (679)

(b) If v is the speed of the CM with respect to the lab frame, then the CM sees
the stationary mass (and hence also the moving mass, because they have the
same m) approaching it at speed v. Therefore, the relativistic addition of v
with itself equals the relative speed of the masses (as viewed by either one),
which we know is 3c/5. Hence,

2v

1 + v2
=

3

5
=⇒ 3v2 − 10v + 3 = 0 =⇒ (3v − 1)(v − 3) = 0 (680)

So the speed of the CM is v = c/3 (since v = 3c isn’t allowed). Alternatively,
you can find v by demanding that the relativistic subtraction of v from 3c/5
(which is how fast the CM sees mass 1 head toward it) equals v (which is how
fast the CM sees mass 2 head toward it).
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12.24. Photon and mass collision

Conservation of energy and momentum give the energy and momentum of the re-
sulting particle as (dropping the c’s) E+m and E, respectively. The very important
relation then gives

M2 = E2
M − p2

M = (E + m)2 − E2 =⇒ M =
√

2Em + m2, (688)

or M =
√

2Em/c2 + m2 with the c’s. If E ¿ mc2, then M ≈ m, as expected.

To find the velocity, v = p/E gives v = E/(E + m), or v = Ec/(E + mc2) with the
c’s. This can also be written as v = c/(1 + mc2/E). If E ¿ mc2, then v ≈ 0, as
expected. And if E À mc2, then v ≈ c, as expected.

12.25. A decay

If E is the energy of the photon, then conservation of energy and momentum give
(dropping the c’s) M = E + γm and 0 = E − γmv, respectively. Combining these
yields M = γmv + γm. Therefore,

M = m
(1 + v)√
1− v2

=⇒ m = M

√
1− v

1 + v
−→ M

√
c− v

c + v
. (689)

The energy of the photon is then

E = γmv =
1√

1− v2

√
1− v

1 + v
Mv =

Mv

1 + v
−→ Mc2v

c + v
. (690)

If v ¿ c, then m ≈ M and E ≈ 0, as expected. And if v ≈ c, then m ≈ 0 and
E ≈ Mc2/2; we essentially have two photons traveling in opposite directions.

12.26. Three photons

Let the forward photon have energy E, and let the other two have energy E′ (their
energies are indeed equal, because their py’s must be equal and opposite). Then
conservation of energy gives γm = 2E′ + E, and conservation of momentum gives
γmv = E − 2E′ cos 60◦ = E − E′. Solving these two equations for E and E′ gives

E =
m

3

1 + 2v√
1− v2

−→ mc2

3

1 + 2v/c√
1− (v/c)2

,

E′ =
m

3

√
1− v

1 + v
−→ mc2

3

√
c− v

c + v
. (691)

If v = 0, then E = E′ = mc2/3, as expected. If v ≈ c, then E ≈ γmc2 and E′ ≈ 0,
which makes sense.

12.27. Perpendicular photon

Let the resulting photon have energy E′. Then conservation of energy gives the
energy of M as E + M − E′. And conservation of px and py give the components
of M ’s momentum as E and −E′, respectively. The very important relation for M
then yields

(E + M − E′)2 = (E2 + E′2) + M2 =⇒ E′ =
EM

E + M
−→ EMc2

E + Mc2
. (692)

If E ≈ 0, then E′ ≈ E (M is basically a brick wall and picks up no energy). If
E À Mc2, then E′ ≈ Mc2 (not obvious).

12.28. Another perpendicular photon

The initial energy and momentum of the system are (5/3)mc2+mc2 = (8/3)mc2 and
(5/3)m(4c/5) = (4/3)mc, respectively. Conservation of energy then gives the energy
of M as EM = (8/3)mc2 − E. And conservation of px and py give the components
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of M ’s momentum as (4/3)mc and −E/c, respectively. The very important relation
for M then yields (dropping the c’s)(

(8/3)m− E
)2

=
(
(4m/3)2 + E2

)
+ M2

=⇒ M =
√

(16/3)m(m− E)

→
√

(16/3)m(m− E/c2). (693)

We must therefore have E ≤ mc2 for this setup to be possible. In the limit E → 0,
we have M = 4m/

√
3. This is just the result for a 1-D collision in which the two

m’s combine to form a mass M , as you can show.

12.29. Decay into photons

Let E be the energy of the bottom photon. Then conservation of energy gives
the energy of the top photon as γm − E. And conservation of px and py give the
components of its momentum as γmv and E, respectively. Since E2 = p2 for a
photon, we have

(γm−E)2 = (γmv)2 + E2 =⇒ γ2m2(1− v2) = 2γmE =⇒ E = m/2γ. (694)

We want

py

px
=

1

2
=⇒ m/2γ

γmv
=

1

2
=⇒ 1

γ2
= v =⇒ v2 + v − 1 = 0 (695)

Putting the c’s back in, we find v/c = (−1 +
√

5)/2 (the other root is smaller than
−1).

12.30. Maximum mass

The energy of the resulting particle is E. Let its mass be M and its momentum be
pf . Then the very important relation gives E2 = p2

f + M2. Since E is given, M is
maximum when pf = 0. That is, the initial momenta are equal and opposite. Call
them p. Then the sum of the energies of the photon and initial mass is

E = p +
√

p2 + m2 =⇒ (E − p)2 = p2 + m2 =⇒ p =
E2 −m2

2E
. (696)

The energy of the photon is therefore

Eγ = p =
E2 −m2

2E
−→ E2 −m2c4

2E
. (697)

The energy of the mass is then

Em = E − Eγ =
E2 + m2c4

2E
. (698)

If m ≈ 0, then Eγ ≈ Em ≈ E/2 (we essentially have two photons). If m ≈ E/c2,
then Eγ ≈ 0 and Em ≈ E (both momenta are small).

12.31. Equal angles

Conservation of py says that the y components of the two final momenta are equal
and opposite. The equality of the two angles then implies that the px components
are equal. Conservation of px then says that both px’s are equal to E/2. Both
momenta therefore have magnitude E/(2 cos θ).

Conservation of energy gives the final energy of m as Em = E + m − E/(2 cos θ).
The very important relation applied to m then gives(

E + m− E

2 cos θ

)2

=
(

E

2 cos θ

)2

+ m2 =⇒ cos θ =
E + m

E + 2m
−→ E + mc2

E + 2mc2
.

(699)
In the limit E ¿ mc2, we have cos θ ≈ 1/2 =⇒ θ ≈ 60◦ (not obvious). In the limit
E À mc2, we have cos θ ≈ 1 =⇒ θ ≈ 0◦.
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12.32. Pion-muon race

We are given γmc2 = 10 GeV for both particles. Using mπc2 ≈ 137 MeV and
mµc2 ≈ 105.7 MeV, we find γπ ≈ 73.0 and γµ ≈ 94.6. Now,

γ ≡ 1/
√

1− v2/c2 =⇒ v = c
√

1− 1/γ2 ≈ c(1− 1/2γ2), (700)

for reasonably large γ. The difference in the two speeds is therefore ∆v ≈ c(1/2γ2
π−

1/2γ2
µ). The total time is essentially t ≈ (100m)/c, so the distance the pion lags

behind the muon after this time is

∆d = t∆v ≈ 100m

c
· c

(
1

2(73.0)2
− 1

2(94.6)2

)
≈ 3.8 · 10−3 m = 3.8mm. (701)

12.33. Higgs production

(a) Let the proton mass be m and the Higgs mass be km, where k ≈ 100 here. If
the incoming proton has energy E, then the total energy and momentum are
E + m and

√
E2 −m2, respectively. So the very important relation applied to

the Higgs gives

(E + m)2 = (E2 −m2) + (km)2 =⇒ E = (k2/2− 1)m. (702)

The amount of energy that must be added to the rest energy of the incoming
proton is therefore ∆E = (k2/2 − 2)m. Note that ∆E = 0 if k = 2, as
expected. Note also that ∆E behaves quadratically with k. If k ≈ 100, then
∆E ≈ 5000 mc2 ≈ 5000 GeV.

(b) The Higgs has zero momentum in this case, so each proton must simply have
an energy km/2 to make a total energy of km. The amount of energy that
must be added to the two rest energies is therefore ∆E = (k − 2)m. Again,
∆E = 0 if k = 2, as expected. But note that ∆E now behaves linearly with
k. If k ≈ 100, then ∆E ≈ 100 mc2 ≈ 100 GeV. We see that a much smaller
amount of energy is required for the creation of a heavy particle if the two
initial particles have equal and opposite momenta. This way the final particle
has no wasted kinetic energy.

12.34. Maximum energy

(a) We have

(PM − Pm)2 = P 2
µ =⇒ M2 + m2 − 2PM · Pm = E2

µ − p2
µ. (703)

Since M is initially at rest, we have PM ·Pm = MEm. The quantity E2
µ−p2

µ is
an invariant, so in particular it equals the square of the energy (call it Eµ,CM)
in the CM frame, where the momentum is zero. Therefore, Eq. (703) gives
Em = (M2 + m2 − E2

µ,CM)/2M . So to maximize Em, we want to minimize
Eµ,CM. But the minimum energy in the CM frame is µ (or µc2, with the c’s),
and it is achieved when all the particles are at rest; any nonzero motion would
add kinetic energy to this µc2. (If the particles are at rest in the CM frame,
this means that they simply form a blob in any other frame.) The maximum
Em is therefore

Emax
m =

M2 + m2 − µ2

2M
. (704)

(b) If m represents the electron, and if µ represents the proton and the neutrino,
then from Eq. (704), the maximum energy that the electron can have is (in
MeV)

(939.6)2 + (0.5)2 − (938.3 + 0)2

2(939.6)
≈ 1.3. (705)


