3.28. Atwood's 2

By conservation of string, the downward acceleration of the left mass is 3 times the upward acceleration of the right mass, because three segments of string are each shortened by d if the right mass rises by d. Also, three tensions pull up on the right mass. So the F = ma equations for the left and right masses are, respectively,

$$mg - T = ma_1, \qquad 3T - mg = ma_2.$$
 (21)

Solving these, along with $a_1 = 3a_2$, gives $a_1 = 3g/5$ downward, and $a_2 = g/5$ upward.

3.52. Increasing distance

(a) Since $x = (v \cos \theta)t$ and $y = (v \sin \theta)t - gt^2/2$, the square of the distance from you is

$$\ell^2 = x^2 + y^2 = (v\cos\theta t)^2 + (v\sin\theta t - gt^2/2)^2 = v^2 t^2 - vg\sin\theta t^3 + g^2 t^4/4.$$
(51)

We want the derivative of ℓ (and thus ℓ^2) to never be less than zero. The derivative $d\ell^2/dt$ equals zero if

$$0 = 2v^{2}t - 3vg\sin\theta t^{2} + g^{2}t^{3}$$

$$\implies 0 = g^{2}t^{2} - 3vg\sin\theta t + 2v^{2}$$

$$\implies t = \frac{1}{2g^{2}} \left(3vg\sin\theta \pm \sqrt{9v^{2}g^{2}\sin^{2}\theta - 8v^{2}g^{2}} \right).$$
(52)

A solution does *not* exist for t if the discriminant is less than zero, that is, if $\sin \theta < 2\sqrt{2}/3 \implies \theta < 70.5^{\circ}$. So if θ is less than or equal to 70.5° , then ℓ never decreases during the flight.

3.57. Rotating hoop

The vertical component of the normal force must be mg, which implies that the horizontal component is $mg \tan \theta$. The horizontal F = ma equation is then $mg \tan \theta = m(R\sin\theta)\omega^2 \implies \omega = \sqrt{g/R\cos\theta}$. We see that the minimum ω occurs when $\theta = 0$, in which case it has the value $\sqrt{g/R}$. If ω is smaller than this, then the bead just sits at the bottom of the hoop.

4.16. Angled rails

Let x be the position of each mass along the rail, relative to the equilibrium position. Then the spring stretches a distance $2x\sin\theta$, yielding a force of $2kx\sin\theta$. The component of this force along the rail is $2kx\sin^2\theta$. So F = ma along the rail gives $-2kx\sin^2\theta = m\ddot{x}$. Hence, $\omega = \sqrt{2k/m}\sin\theta$.