
Chapter 3

Using F = ma

3.25. A peculiar Atwood’s machine

(a) The bottom two masses together act like a mass of m/2n−2. This combination
balances the m/2n−2 mass, and so these three act like a mass of m/2n−3, which
then balances the m/2n−3 mass, and so on. This pattern continues until all
the masses on the right side of the top pulley act like a mass m, which then
balances the mass m on the left. So all the masses have zero acceleration.

(b) The tension in the bottom string is now zero, which means that the tension
in the next string is also zero (in particular, 2 times zero), and all the other
tensions are likewise zero. All the masses are therefore in freefall. We see that
removing an infinitesimal mass drastically affects the behavior of the system.

3.26. Keeping the mass still

We need the tension in the upper string to be Mg. So the tension in the lower string
is Mg/2. The F = ma equations are therefore

Mg/2−m1g = m1a, Mg/2−m2g = m2(−a). (19)

Solving for a in both of these and equating the results gives M = 4m1m2/(m1+m2).
We see that as far as M is concerned, m1 and m2 act like an effective mass equal to
the sum of their masses only if they are equal. Otherwise they act like an effective
mass that is less than their sum.

3.27. Atwood’s 1

By conservation of string, the downward acceleration of the left mass is 4 times
the upward acceleration of the right mass, because four segments of string are each
shortened by d if the right mass rises by d. Also, four tensions pull up on the right
mass. So the F = ma equations are

mg − T = ma1, 4T − 2mg = 2ma2. (20)

Solving these, along with a1 = 4a2, gives a1 = 4g/9 downward, and a2 = g/9
upward.

3.28. Atwood’s 2

By conservation of string, the downward acceleration of the left mass is 3 times the
upward acceleration of the right mass, because three segments of string are each
shortened by d if the right mass rises by d. Also, three tensions pull up on the right
mass. So the F = ma equations for the left and right masses are, respectively,

mg − T = ma1, 3T −mg = ma2. (21)

Solving these, along with a1 = 3a2, gives a1 = 3g/5 downward, and a2 = g/5
upward.
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3.51. Perpendicular to plane

Consider the direction perpendicular to the plane. The acceleration is g cos β (back
toward the plane), so if the initial speed is v, then the time in the air is t = 2v/g cos β.
(This can also be obtained by demanding that y(t)/x(t) = − tan β.) When the
projectile hits the plane, we have (using the above value of t)

tan θ =

∣∣∣ ẏ

ẋ

∣∣∣ =
gt− v cos β

v sin β
=

2

sin β cos β
− cos β

sin β
. (50)

Setting the derivative of this equal to zero to obtain the minimum θ, we find tan β =
1/
√

2 =⇒ β ≈ 35.3◦. The associated θ is then given by tan θ = 2
√

2 =⇒ θ ≈ 70.5◦.

3.52. Increasing distance

(a) Since x = (v cos θ)t and y = (v sin θ)t− gt2/2, the square of the distance from
you is

`2 = x2+y2 = (v cos θ t)2+(v sin θ t−gt2/2)2 = v2t2−vg sin θ t3+g2t4/4. (51)

We want the derivative of ` (and thus `2) to never be less than zero. The
derivative d`2/dt equals zero if

0 = 2v2t− 3vg sin θ t2 + g2t3

=⇒ 0 = g2t2 − 3vg sin θ t + 2v2

=⇒ t =
1

2g2

(
3vg sin θ ±

√
9v2g2 sin2 θ − 8v2g2

)
. (52)

A solution does not exist for t if the discriminant is less than zero, that is, if
sin θ < 2

√
2/3 =⇒ θ < 70.5◦. So if θ is less than or equal to 70.5◦, then `

never decreases during the flight.

(b) Let θ0 ≡ 70.5◦. If you throw a ball at an angle θ larger than θ0, then there is a
point (actually two points) in the flight where d`/dt = 0. This means that at
this point the ball is moving in the direction perpendicular to the radial line
from you to the ball. So if this radial line is considered to be the slope of a
hill, then the ball at this point has a velocity that is perpendicular to the hill.
The time-reversed motion of the ball therefore satisfies the setup in Exercise
3.51.

Conversely, if you throw a ball at an angle θ smaller than θ0, then there doesn’t
exist a point where the ball is moving perpendicular to the radial line from
you to the ball, so therefore the velocity is never perpendicular to the slope of
a hill, which means that such a θ isn’t possible in the setup of Exercise 3.51,
as we found. (If someone claimed that they could produce an angle θ < θ0 in
Exercise 3.51, then the-time reversed motion would yield an angle θ < θ0 for
which the distance decreases at some point in the flight, namely just after the
ball passes through the “hill”, in contradiction with the result of this problem.)

3.53. Projectile with drag

(a) F = ma gives ẍ = −αẋ and ÿ = −g − αẏ. Using the initial speed, the x
equation integrates to

ẋ = Ae−αt =⇒ ẋ = v0 cos θ e−αt. (53)

Assuming an initial position of zero, this then integrates to

x = −(v0 cos θ/α)e−αt + B =⇒ x = (v0 cos θ/α)(1− e−αt). (54)
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The y equation is ÿ = −α(g/α+ ẏ), which can be written as (d/dt)(g/α+ ẏ) =
−α(g/α + ẏ). This integrates to

g

α
+ ẏ = Ce−αt =⇒ ẏ = Ce−αt − g

α
=⇒ ẏ =

(
v0 sin θ +

g

α

)
e−αt − g

α
.

(55)
This then integrates to

y = − 1

α

(
v0 sin θ +

g

α

)
e−αt − gt

α
+ D

=⇒ y =
1

α

(
v0 sin θ +

g

α

)(
1− e−αt

)
− gt

α
. (56)

(b) We are given that mαv0 = mg =⇒ g/α = v0. Therefore, Eq. (55) gives
ẏ = (v0 sin θ + v0)e

−αt − v0. At the top of the motion, we have ẏ = 0 =⇒
e−αt = 1/(1 + sin θ). Using Eq. (54), the value of x at this time is

x =
v0 cos θ

g/v0

(
1− 1

1 + sin θ

)
=

v2
0

g

(
sin θ cos θ

1 + sin θ

)
. (57)

Taking the derivative to maximize this, and using cos2 θ = 1 − sin2 θ, yields
the cubic equation, sin3 θ+2 sin2 θ−1 = 0. This has sin θ = −1 as a root. The
remaining quadratic yields a positive root of sin θ = (

√
5−1)/2 =⇒ θ ≈ 38.2◦.

3.54. Low-orbit satellite

F = ma gives mg = mv2/R =⇒ v =
√

gR. Therefore,

v =
√

(9.8m/s2)(6.37 · 106 m) ≈ 7, 900m/s. (58)

3.55. Weight at the equator

Let the gravitational force from the earth be mg0. This would be the normal force
(that is, the reading on the scale) if the earth weren’t spinning. Since the earth
is in fact spinning, the radial F = ma equation is mg0 − N = mv2/R =⇒ N =
m(g0 − ω2R). In other words, the “effective” g that we interpret from the reading
on the scale is g = g0−ω2R. The ω for the earth is ω = 2π/(1 day) = 7.3 · 10−5s−1.
Using R = 6.37 · 106m, we have ω2R ≈ 0.034m/s2. This is about 0.3% of g0, so
the spinning of the earth causes the scale to read about 0.3% less. So if the earth
stopped spinning (but kept its same shape), a 150 lb person would have the scale
read about half a pound more.

3.56. Banking an airplane

The point is that we don’t want there to be any friction (or any other force) acting
along the seat. So we have only the normal force. Let the banking angle be θ.
The vertical component of the normal force is Ny = mg, which implies that the
horizontal component is Nx = mg tan θ. The horizontal F = ma equation is then
Nx = mv2/R =⇒ tan θ = v2/gR. The apparent weight is N =

√
N2

x + N2
y =

m
√

(v2/R)2 + g2.

3.57. Rotating hoop

The vertical component of the normal force must be mg, which implies that the hor-
izontal component is mg tan θ. The horizontal F = ma equation is then mg tan θ =
m(R sin θ)ω2 =⇒ ω =

√
g/R cos θ. We see that the minimum ω occurs when θ = 0,

in which case it has the value
√

g/R. If ω is smaller than this, then the bead just
sits at the bottom of the hoop.

3.58. Swinging in circles

Pick one of the masses. Let ` be the length of the string, and let θ be the angle
it makes with the vertical. The vertical component of the tension is mg, so the
horizontal F = ma equation is mg tan θ = m(` sin θ)ω2 =⇒ g/ω2 = ` cos θ. But

Chapter 4

Oscillations

4.13. kx force

Trying a solution of the form x(t) = Aeαt in kx = mẍ gives α = ±
√

k/m, so the
most general solution is

x(t) = Ae
√

k/m t + Be−
√

k/m t. (88)

We want A = 0, because otherwise the first term would become large for large t.

So x(t) = Be−
√

k/m t, which gives B = x0. Hence, v(t) = −x0

√
k/m e−

√
k/m t.

Therefore, v(0) = −x0

√
k/m.

4.14. Rope on a pulley

Let x be the distance each end is above and below the average height. Then the
net force along the rope is σ(2x)g, so F = ma gives 2σgx = σLẍ. So we essentially
have the Exercise 4.13 with k/m → 2g/L. You should therefore pull the higher end

down with a speed v(0) = x0

√
2g/L.

4.15. Amplitude

Taking the derivative to find the max (or min) yields tan ωt = D/C. At this time
we have

x(t) = C cos ωt + D sin ωt = C · C√
C2 + D2

+ D · D√
C2 + D2

=
√

C2 + D2. (89)

This checks in the special cases where C = 0 or D = 0.

4.16. Angled rails

Let x be the position of each mass along the rail, relative to the equilibrium position.
Then the spring stretches a distance 2x sin θ, yielding a force of 2kx sin θ. The
component of this force along the rail is 2kx sin2 θ. So F = ma along the rail gives
−2kx sin2 θ = mẍ. Hence, ω =

√
2k/m sin θ.

4.17. Effective spring constant

(a) Let the mass move a distance x to the right. Then the two springs pull to the
left with forces −k1x and −k2x. The total force is therefore F = −(k1 + k2)x.
Hence, keff = k1 + k2. Note that if k1 = 0, then keff = k2, as expected. And if
k1 = ∞, then keff = ∞, as expected.

(b) Let the mass move a distance x to the right. How much does each spring
stretch? The key is that both springs must exert the same force, otherwise
there would be a nonzero net force on some part of the massless springs, and
this part would then undergo infinite acceleration. Let the springs stretch by
x1 and x2. Then we have k1x1 = k2x2. And also x1 + x2 = x, of course.
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