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3.29. Atwood’s 3

Define all accelerations positive upwards. By conservation of string, we have a2 =
−(a1 + a3)/2, because whatever mass disappears above m and 3m must appear
above 2m and be divided evenly between the two segments there. The F = ma
equations are

T −mg = ma1, 2T − 2mg = 2ma2, T − 3mg = 3ma3. (22)

Solving these (the first two quickly give a1 = a2), along with a2 = −(a1 + a3)/2,
gives a1 = a2 = g/5, and a3 = −3g/5.

3.30. Atwood’s 4

If T is the tension in the string connected to the right mass, then you can work your
way down the pulleys to show that the tension in the string connected to the left
mass is 2NT (where there are N pulleys, not including the rightmost one).

By conservation of string, if the left mass has acceleration a upward, then the second-
to-left pulley has acceleration 2a upward. This reasoning continues until the right
mass has acceleration 2Na downward.

The F = ma equations for the left and right masses are then (with upward and
downward taken to be positive, respectively)

2NT −mg = ma,

mg − T = m(2Na). (23)

Multiplying the second equation by 2N and adding the result to the first equation
gives the acceleration of the left mass as a = g(2N − 1)/(22N + 1). The acceleration
of the right mass is then

2Na =

(
22N − 2N

22N + 1

)
g =

(
1− 2−N

1 + 2−2N

)
g. (24)

For N = 0 we have a = 0, as expected. For N → ∞ we have a ≈ 0, but 2Na ≈ g;
so the left mass hardly moves upward, while the right mass accelerates downward
with an acceleration essentially equal to g.

3.31. Atwood’s 5

Draw a horizontal line between the two shaded pulleys. If the right pulley goes down
by d, then a length d of string appears above the line (because 2d appears above the
top pulley, but d disappears right below it). This length d must disappear below
the line. It gets divided evenly between the two pieces touching the bottom pulley,
which therefore goes up by d/2. So the downward acceleration of the top pulley is
twice the upward acceleration of the bottom pulley. The F = ma equations for the
top and bottom pulleys are, respectively,

mg + T − 2T = ma1, 2T −mg = ma2. (25)

Solving these, along with a1 = 2a2, gives a1 = 2g/5 downward, and a2 = g/5
upward. And T happens to equal 3mg/5.

3.32. Atwood’s 6

The string is one continuous piece, so the tension is the same throughout it. The
force on the (massless) left pulley is therefore T − 2T = −T . But this force must
be zero because the pulley is massless. Hence, T = 0, which means that nothing is
holding the masses up, so both are in freefall.

The physical reason for this result is that the left pulley is free to fall however much
is needed to provide enough string for the freefall motion of the masses. If the left
pulley falls a distance d, then a length d of string appears above it, but a length 2d
disappears below it. So a length d has been “generated,” which allows each of the
masses to fall a distance d/3 (as you can verify). Since there is nothing keeping the
left pulley from accelerating downward at 3g, there is therefore nothing keeping the
two masses from freefalling at g.
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3.37. −bv2 force

F = ma gives −bv2 = m dv/dt. Separating variables and integrating gives

− b

m

∫ t

0

dt =

∫ v

v0

dv

v2
=⇒ − bt

m
=

1

v0
− 1

v
. (40)

Solving for v, writing it as dx/dt, and then separating variables and integrating gives∫ x

0

dx =

∫ t

0

dt
1
v0

+ bt
m

=⇒ x =
m

b
ln

(
1

v0
+

bt

m

) ∣∣∣∣t

0

=⇒ x(t) =
m

b
ln

(
1 +

v0bt

m

)
.

(41)
This goes to infinity as t →∞, but slowly like a log.

3.38. kx force

F = ma gives kx = mv dv/dx. Separating variables and integrating gives∫ x

x0

kx dx =

∫ v

0

mv dv =⇒ 1

2
kx2 − 1

2
kx2

0 =
1

2
mv2. (42)

Solving for v, writing it as dx/dt, and then separating variables and integrating gives∫ x

x0

dx√
x2 − x2

0

= ±
√

k

m

∫ t

0

dt. (43)

Using the substitution x ≡ x0 cosh θ, which implies dx = x0 sinh θ dθ, yields∫ θ

0

x0 sinh θ dθ

x0 sinh θ
= ±

√
k

m
t =⇒ θ = ±

√
k

m
t =⇒ x(t) = x0 cosh

(√
k

m
t

)
.

(44)

3.39. Equal distances

We know from Eq. (3.38) that the horizontal distance is 2v2
0 sin θ cos θ/g. The time

to the top is v0 sin θ/g, so the maximum height is (looking at the ball fall back
down to the ground) gt2/2 = v2

0 sin2 θ/2g. Equating these results gives tan θ = 4, so
θ ≈ 76◦.

3.40. Redirected motion

First solution: Let v be the speed right after the bounce, which is the same
as the speed right before the bounce. If t1 is the time to hit the surface, then
gt21/2 = h− y gives t1 =

√
2(h− y)/g, and so v = gt1 =

√
2g(h− y). The vertical

speed is zero right after the bounce, so the time it takes to hit the ground is given
by gt22/2 = y. Hence t2 =

√
2y/g. The horizontal distance traveled is therefore

d = vt2 = 2
√

y(h− y). Taking the derivative, we see that this function of y is
maximum at y = h/2. The corresponding value of d is dmax = h.

Second solution: Assume that the greatest distance, d0, is obtained when y = y0,
and let the speed at y0 be v0. Consider the situation where the ball falls all the
way down to y = 0 and then bounces up at an angle such that when it reaches
the height y0, it is traveling horizontally. When it reaches the height y0, the ball
will have speed v0 (by conservation of energy, which will be introduced in Chapter
5), so it will travel a horizontal distance d0 from this point. The total horizontal
distance traveled is therefore 2d0. So to maximize d0, we simply need to maximize
the horizontal distance in this new situation. From the example in Section 3.4, we
want the ball to leave the ground at a 45◦ angle. Since it leaves the ground with
speed

√
2gh, you can easily show that such a ball will be traveling horizontally at a

height y = h/2, and it will travel a distance 2d0 = 2h. Hence, y0 = h/2, and d0 = h.
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` cos θ is the vertical distance below the ceiling, which we see has value of g/ω2,
independent of which string we’re looking at. The masses therefore all lie on a
horizontal line at a distance g/ω2 below the ceiling. Note that a given ω is possible
only if the lengths of all the strings satisfy ` ≥ g/ω2.

3.59. Swinging triangle

Let T1 be the tension in the left rod, let T2 be the tension in the upper right rod,
and let T3 be the compression in the lower right rod. Since v = 0 at the start, the
radial accelerations are zero.

The vertical (radial) F = ma equation on the left mass is

T1 − (1/2)T3 −mg = 0. (59)

The horizontal (tangential) F = ma equation on the left mass is

(
√

3/2)T3 = ma. (60)

The radial F = ma equation on the right mass is

T2 − (1/2)T3 − (1/2)mg = 0. (61)

The tangential F = ma equation on the right mass is

(
√

3/2)mg − (
√

3/2)T3 = ma. (62)

We have four equations in four unknowns (T1, T2, T3, a). Solving the equations by
the method of your choice gives T1 = (5/4)mg, T2 = (3/4)mg, T3 = (1/2)mg, and
a = (

√
3/4)g. The T ’s are all positive, so they are tensions and compressions as

defined above.

3.60. Circular and plane pendulums

The vertical component of the tension in the string of the circular pendulum is
mg. So the horizontal component is mg tan β ≈ mg sin β = mg(r/`), where r is
the radius of the circle. If θ is the angle the position vector makes with the x axis
in the horizontal plane, then the Fx component of the force is −mg(r/`) cos θ =
−mg(r/`)(x/r) = −mg(x/`), which is independent of y.

Let α be the angle the plane pendulum makes with the vertical. For small α, the
tension in the string of the plane pendulum is essentially equal to mg. So the
horizontal component Fx is −mg sin α = −mg(x/`), in agreement with above.

3.61. Rolling wheel

(a) Taking successive derivatives gives

(x, y) = R(ωt + sin ωt, 1 + cos ωt)

=⇒ (ẋ, ẏ) = R(ω + ω cos ωt,−ω sin ωt)

=⇒ (ẍ, ÿ) = R(−ω2 sin ωt,−ω2 cos ωt). (63)

(b) t = 0 corresponds to the top of the wheel, because y = 2R at this time. From
Eq. (63), the velocity and acceleration at t = 0 are (2Rω, 0) and (0,−Rω2),
respectively. Therefore, the magnitudes at the top are v = 2Rω and a = Rω2.
But a = v2/r. Therefore, r = v2/a = 4R.

3.62. Radius of curvature

(a) We have a = v2/r =⇒ r = v2/a. At the top, v = v0 cos θ and a = g.
Therefore, r = (v0 cos θ)2/g.

(b) Only the component of the acceleration perpendicular to the path is relevant
in finding the radius of curvature. At the beginning, this component is g cos θ.
Since v = v0 at the start, we have r = v2

0/(g cos θ).
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(c) The maximum height is the usual (v0 sin θ)2/2g. So we want

v2
0 cos2 θ

g
=

1

2

(
v2
0 sin2 θ

2g

)
=⇒ tan θ = 2 =⇒ θ ≈ 63.4◦. (64)

3.63. Driving on tilted ground

(a) The component of gravity along the plane is g sin θ. The car is most likely
to slip at the bottom of the circle, because at this location the g sin θ points
radially outwards (so that it works against the radially inwards friction force).
F = ma at the bottom point gives Ff −mg sin θ = mv2/R. But Ff ≤ µN =
µmg cos θ, so

µmg cos θ −mg sin θ ≥ mv2/R =⇒ v ≤
√

gR(µ cos θ − sin θ). (65)

Note that there is no possible value for v if tan θ > µ.

(b) At the side points, the “vertical” (along the plane) component of Ff must be
mg sin θ, because there is no acceleration in that direction. And the horizontal
component of Ff must be mv2/R. So we have

(mg sin θ)2 + (mv2/R)2 = F 2
f ≤ (µmg cos θ)2

=⇒ v ≤
√

gR (µ2 cos2 θ − sin2 θ)1/4. (66)

This upper bound is larger than the one in part (a), and it agrees with that
one when θ = 0.

3.64. Car on a banked track

In the case of maximal speed, the friction force points down along the “plane.” So
the F = ma equations along the plane and perpendicular to it are

Ff + mg sin θ = (mv2/R) cos θ and N −mg cos θ = (mv2/R) sin θ. (67)

Solving for Ff and N and demanding Ff ≤ µN gives

v ≤
√

gR

√
sin θ + µ cos θ

cos θ − µ sin θ
. (68)

Note that if tan θ ≥ 1/µ, then v can be arbitrarily large.

In the case of minimal speed, the friction force points up along the plane. So the
F = ma equations along the plane and perpendicular to it are

−Ff + mg sin θ = (mv2/R) cos θ and N −mg cos θ = (mv2/R) sin θ. (69)

The only change from above is Ff → −Ff . Solving for Ff and N and demanding
Ff ≤ µN gives

v ≥
√

gR

√
sin θ − µ cos θ

cos θ + µ sin θ
. (70)

Note that if tan θ ≤ µ, then v can be zero. If µ = 0, then the above two bounds are
equal and v must exactly equal

√
gR tan θ.

3.65. Horizontal acceleration

First solution: Let θ be the angular position below the horizontal. Then the
speed is v =

√
2gh =

√
2gR(1 + sin θ), so the radial acceleration is ar = v2/R =

2g(1 + sin θ). The tangential acceleration is at = g cos θ. We want the vertical
components of ar and at to cancel. Therefore,

ar sin θ = at cos θ =⇒ 2g(1 + sin θ) sin θ = g cos θ cos θ. (71)
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particle heads out to larger r. For large r, we have ṙ ≈ √
Ar2 ≡ αr2. Therefore,

starting at the moment when the particle is located at some large R, we have∫ r

R

dr

r2
≈

∫ t

0

α dt =⇒ 1

R
− 1

r
≈ αt =⇒ r ≈ 1

1
R
− αt

. (78)

If t = 1/(αR), then r = ∞, as we wanted to show.

Note: the particle will actually reach infinity in a finite time even if ṙ ≤ 0, provided
that the initial r and ṙ don’t conspire exactly so that E (and hence B) is zero.

3.69. A force Fθ = 2mṙθ̇

Fθ = 2mṙθ̇ gives m(rθ̈ + 2ṙθ̇) = 2mṙθ̇, which yields

rθ̈ = 0 =⇒ θ̈ = 0 =⇒ θ̇ = C =⇒ θ = Ct + D. (79)

Fr = 0 gives r̈−rθ̇2 = 0. Using the θ̇ we just found, this becomes r̈ = rC2. To solve
this, we could multiply by ṙ and integrate, and then solve for ṙ and integrate again.
Or we can solve it the simple way by using the fact that exponential functions
have derivatives that are proportional to themselves. So the general solution is
r(t) = aeCt + be−Ct. But Ct = θ − D. Absorbing the extra multiplicative factor
into a and b gives r(θ) = Aeθ + Be−θ, as desired.

3.70. Stopping on a cone

The F = ma equation perpendicular to the surface of the cone gives

mg sin θ −N = (mv2/R) cos θ =⇒ N = mg sin θ − (mv2/R) cos θ. (80)

The F = ma equation along the direction of the motion gives −µN = m(dv/dt),
which yields

−µ dt =
dv

g sin θ − (v2/R) cos θ
=⇒ −µg sin θ

∫ t

0

dt =

∫ 0

v0

dv

1− v2

gR tan θ

. (81)

Letting u ≡ v/
√

gR tan θ gives

−µg sin θ

∫ t

0

dt =

∫ 0

v0/
√

gR tan θ

√
gR tan θ du

1− u2

=⇒ t = − 1

2µ

√
R

g sin θ cos θ
ln

(
1 + u

1− u

) ∣∣∣0
v0/
√

gR tan θ

=
1

2µ

√
R

g sin θ cos θ
ln

(√
gR tan θ + v0√
gR tan θ − v0

)
. (82)

Note that if v0 =
√

gR tan θ, then t = ∞. This makes sense, because this is the
speed for which the string naturally makes an angle of θ with the vertical (as you
can show); so the normal force is initially (and hence always) equal to zero. Also, if
θ → π/2 (more precisely, if v0/

√
gR tan θ ¿ 1), then to lowest order the argument

of the log is 1+2v0/
√

gR tan θ. So the log is essentially equal to 2v0/
√

gR tan θ. We
then obtain t ≈ v0/(µg sin θ) ≈ v0/(µg), which makes sense because the acceleration
on flat ground is simply a = −µg. (Or more generally for θ 6= π/2, if v0 is very small,
the normal force is essentially equal to mg sin θ, so the acceleration is a = −µg sin θ.)

3.71. Motorcycle circle

(a) The maximum friction force is µmg, so the maximum speed is given by µmg =
mv2/R =⇒ vmax =

√
µgR. The radial and tangential F = ma equations are

Fr = mv2/R, and Ft = mv dv/dx. (83)


