3.29. Atwood's 3

Define all accelerations positive upwards. By conservation of string, we have $a_2 = -(a_1 + a_3)/2$, because whatever mass disappears above m and 3m must appear above 2m and be divided evenly between the two segments there. The F = ma equations are

$$T - mg = ma_1, \qquad 2T - 2mg = 2ma_2, \qquad T - 3mg = 3ma_3.$$
 (22)

Solving these (the first two quickly give $a_1 = a_2$), along with $a_2 = -(a_1 + a_3)/2$, gives $a_1 = a_2 = g/5$, and $a_3 = -3g/5$.

3.39. Equal distances

We know from Eq. (3.38) that the horizontal distance is $2v_0^2 \sin \theta \cos \theta/g$. The time to the top is $v_0 \sin \theta/g$, so the maximum height is (looking at the ball fall back down to the ground) $gt^2/2 = v_0^2 \sin^2 \theta/2g$. Equating these results gives $\tan \theta = 4$, so $\theta \approx 76^\circ$.

3.62. Radius of curvature

- (a) We have $a = v^2/r \implies r = v^2/a$. At the top, $v = v_0 \cos \theta$ and a = g. Therefore, $r = (v_0 \cos \theta)^2/g$.
- (c) The maximum height is the usual $(v_0 \sin \theta)^2/2g$. So we want

$$\frac{v_0^2 \cos^2 \theta}{g} = \frac{1}{2} \left(\frac{v_0^2 \sin^2 \theta}{2g} \right) \implies \tan \theta = 2 \implies \theta \approx 63.4^\circ.$$

3.70. Stopping on a cone

The F = ma equation perpendicular to the surface of the cone gives

$$mg\sin\theta - N = (mv^2/R)\cos\theta \implies N = mg\sin\theta - (mv^2/R)\cos\theta.$$
 (80)

The F = ma equation along the direction of the motion gives $-\mu N = m(dv/dt)$, which yields

$$-\mu dt = \frac{dv}{g\sin\theta - (v^2/R)\cos\theta} \implies -\mu g\sin\theta \int_0^t dt = \int_{v_0}^0 \frac{dv}{1 - \frac{v^2}{gR\tan\theta}}.$$
 (81)

Letting $u \equiv v/\sqrt{gR \tan \theta}$ gives

$$-\mu g \sin \theta \int_{0}^{t} dt = \int_{v_{0}/\sqrt{gR \tan \theta}}^{0} \frac{\sqrt{gR \tan \theta} \, du}{1 - u^{2}}$$
$$\implies t = -\frac{1}{2\mu} \sqrt{\frac{R}{g \sin \theta \cos \theta}} \ln \left(\frac{1 + u}{1 - u}\right) \Big|_{v_{0}/\sqrt{gR \tan \theta}}^{0}$$
$$= \frac{1}{2\mu} \sqrt{\frac{R}{g \sin \theta \cos \theta}} \ln \left(\frac{\sqrt{gR \tan \theta} + v_{0}}{\sqrt{gR \tan \theta} - v_{0}}\right). \tag{82}$$

Note that if $v_0 = \sqrt{gR \tan \theta}$, then $t = \infty$. This makes sense, because this is the speed for which the string naturally makes an angle of θ with the vertical (as you can show); so the normal force is initially (and hence always) equal to zero. Also, if $\theta \to \pi/2$ (more precisely, if $v_0/\sqrt{gR \tan \theta} \ll 1$), then to lowest order the argument of the log is $1 + 2v_0/\sqrt{gR \tan \theta}$. So the log is essentially equal to $2v_0/\sqrt{gR \tan \theta}$. We then obtain $t \approx v_0/(\mu g \sin \theta) \approx v_0/(\mu g)$, which makes sense because the acceleration on flat ground is simply $a = -\mu g$. (Or more generally for $\theta \neq \pi/2$, if v_0 is very small, the normal force is essentially equal to $mg \sin \theta$, so the acceleration is $a = -\mu g \sin \theta$.)