
Chapter 2

Statics

2.20. Block under an overhang

Let’s break up the forces into components parallel and perpendicular to the over-
hang. Let positive Ff point up along the overhang. Balancing the forces parallel
and perpendicular to the overhang gives, respectively,

Ff = Mg sin β + Mg cos β, and

N = Mg sin β −Mg cos β. (5)

N must be positive, so we immediately see that β must be at least 45◦ if there is
any chance that the setup is static.

The coefficient µ tells us that |Ff | ≤ µN . Using Eq. (5), this inequality becomes

Mg(sin β + cos β) ≤ µMg(sin β − cos β) =⇒ µ + 1

µ− 1
≤ tan β. (6)

We see that we must have µ > 1 in order for there to exist any values of β that
satisfy this inequality. If µ →∞, then β can be as small as 45◦, but it can’t be any
smaller.

2.21. Pulling a block

The Fy forces tell us that N + F sin θ − mg = 0 =⇒ N = mg − F sin θ. And
assuming that the block slips, the Fx forces tell us that F cos θ > µN . Therefore,

F cos θ > µ(mg − F sin θ) =⇒ F >
µmg

cos θ + µ sin θ
. (7)

Taking the derivative to minimize this then gives tan θ = µ. Plugging this θ back
into F gives F > µmg/

√
1 + µ2. If µ = 0, we have θ = 0 and F > 0. If µ →∞, we

have θ ≈ 90◦ and F > mg.

2.22. Holding a cone

Let F be the friction force at each finger. Then the Fy forces on the cone tell us
that 2F cos θ − 2N sin θ −mg = 0. But F ≤ µN . Therefore,

2µN cos θ − 2N sin θ −mg > 0 =⇒ N ≥ mg

2(µ cos θ − sin θ)
. (8)

This is the desired minimum normal force. When µ = tan θ, we have N = ∞. So
µ = tan θ is the minimum allowable value of µ.

2.23. Keeping a book up

The result of Problem 2.4 is F ≥ mg/(sin θ + µ cos θ), assuming that sin θ + µ cos θ
is positive (that is, tan θ > −µ). If it is negative, there is no solution for F . To find
the maximum force, consider two cases:
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fact, because the stick is massless), which contradicts the fact that the system is
static.

(2) If the stick is massive, there is now a torque from gravity (unless the stick is
hanging vertically). This can cancel a nonzero torque from the hinge at the other
end.

2.30. Ball on a wall

Let T be the tension in the string. Then the friction force Ff from the wall must
also be T , to provide zero net torque around the center. So if N is the normal
force from the wall, then balancing the x forces quickly gives N = T sin θ. But
Ff ≤ µN =⇒ T ≤ µ(T sin θ) =⇒ µ ≥ 1/ sin θ. Interestingly, this equals 1 for
θ = 90◦.

2.31. Cylinder and hanging mass

If T is the tension in the string, then T = mg. If F is the friction force from the
plane, then balancing torques around the center of the cylinder gives F = T , so F
also equals mg. If N is the normal force from the plane, then balancing horizontal
forces on the cylinder gives N sin θ = F cos θ =⇒ N = mg/ tan θ. Finally, balancing
vertical forces on the cylinder gives

N cos θ + F sin θ −Mg − T = 0 =⇒
(

mg

tan θ

)
cos θ + (mg) sin θ −mg = Mg

=⇒ m =
(

sin θ

1− sin θ

)
M. (12)

If θ = 0, then m = 0. And if θ → 90◦, then m →∞. These make sense.

Alternatively, once we know that T = mg, we can just use torque around the contact
point on the plane, which doesn’t require knowing F or N . The lever arm for the
Mg force is R sin θ, and the lever arm for the T force is R(1− sin θ). Balancing the
torques around the contact point therefore gives (Mg)R sin θ = (mg)R(1− sin θ), in
agreement with the above result.

2.32. Ladder on a corner

If Nc is the normal force from the corner, then balancing torques around the top end
of the ladder gives Nc(3L/4) = Mg(L/2) cos θ =⇒ Nc = (2/3)Mg cos θ. And if Nw

is the normal force from the wall, then balancing torques around the corner gives
Nw(3L/4) sin θ = Mg(L/4) cos θ =⇒ Nw = (1/3)Mg cos θ/ sin θ. If Ff is the friction
force at the corner, then balancing the horizontal forces gives Ff cos θ = Nc sin θ+Nw,
and so Ff = (2/3)Mg sin θ + (1/3)Mg/ sin θ. But we need Ff ≤ µNc. Therefore,

2Mg sin θ

3
+

Mg

3 sin θ
≤ µ

2Mg cos θ

3
=⇒ µ ≥ sin θ

cos θ
+

1

2 sin θ cos θ
. (13)

Taking the derivative to minimize this gives tan θ = 1/
√

3 =⇒ θ = 30◦.

2.33. Stick on a corner

If N is the normal force from the corner, then balancing torques around your finger
gives N(L/4) = Mg(L/2) cos θ =⇒ N = 2Mg cos θ. Balancing the horizontal forces
then gives your Fx as Fx = N sin θ = 2Mg cos θ sin θ. And balancing the vertical
forces gives your Fy as Fy = Mg − N cos θ = Mg − 2Mg cos2 θ. Squaring these
components and simplifying gives the nice clean result that the magnitude of your
force is F = Mg. The vertical component satisfies Fy = 0 when cos θ = 1/

√
2, so

θ = 45◦.
Alternatively, a quicker way to do the problem is to note that balancing torques
around the pivot, along with forces along the line of the stick, tells us that your
force must have components Mg sin θ along the stick and Mg cos θ perpendicular to
it. In other words, your force must have magnitude Mg and must make the same
angle with the stick as the gravitational force does.
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2.34. Stick and a cylinder

(a) Balancing torques on the cylinder around its center tells us that the friction
forces from the plane and the stick are equal. Call them F . Balancing torques
on the stick around the pivot tells us that the normal force from the cylinder
on the stick is mg/2. Let N be the normal force from the plane on the cylin-
der. Balancing horizontal forces on cylinder gives F + F cos θ = N sin θ, and
balancing vertical forces gives mg + mg/2 = F sin θ + N cos θ. Solving these
equations for N yields N = 3mg/2. (This can also be obtained more quickly
by balancing torques on the whole system around the pivot.)

(b) The above equations give F = (3mg/2) sin θ/(1 + cos θ). The cylinder doesn’t
slip on the plane if F ≤ µ(3mg/2) =⇒ µ ≥ sin θ/(1 + cos θ). The cylinder
doesn’t slip under the stick if F ≤ µ(mg/2) =⇒ µ ≥ 3 sin θ/(1 + cos θ). Both
of these conditions must be satisfied, and the latter is more strict, so we have
µmin = 3 sin θ/(1 + cos θ). If θ → 0, then µmin → 0, as expected. If θ → 90◦,
then µmin → 3, which isn’t obvious.

2.35. Two sticks and a string

(a) Balancing vertical forces on the whole system tells us that the normal forces at
the bottoms of the sticks must sum to 2mg. Balancing torques on the whole
system around the hinge then tells us that these normal forces must be equal,
and hence both equal to mg. Finally, balancing torques on the right stick
around the hinge tells us that the tension T in the string satisfies

T (` cos 2θ) + mg(`/2) sin θ = mg` sin θ =⇒ T =
mg sin θ

2 cos 2θ
. (14)

(b) Look at the forces on the right stick. The mg forces (gravity and normal force)
cancel. Therefore, the force from the hinge must cancel the tension. So the
hinge force points up to the right (perpendicular to the stick) with magnitude
mg sin θ/(2 cos 2θ).

2.36. Two sticks and a wall

Let Fx and Fy be the desired components. The masses of the bottom and top sticks
are ρL and ρ(L/ cos θ), respectively. So balancing torques on the whole system
around the left end of the bottom stick gives

Fx(L tan θ) = ρg
(

L

cos θ
+ L

)(
L

2

)
=⇒ Fx =

ρLg

2

(
1 + cos θ

sin θ

)
. (15)

Balancing torques on the top stick around its bottom end, and using the Fx we just
found, gives

FyL = Fx(L tan θ) + ρg
(

L

cos θ

)(
L

2

)
=⇒ Fy =

ρLg

2

(
2 + cos θ

cos θ

)
. (16)

Fx goes to infinity for θ → 0, and Fy goes to infinity for θ → π/2.

Remark: Concerning the footnote in the problem: Squaring and adding the components

and using sin2 θ = 1−cos2 θ gives F 2 = (1+c)/(1−c)+(2+c)2/c2, with c ≡ cos θ. Setting

the derivative equal to zero gives c3 − 6c + 4 = 0. This cubic fortunately has 2 as a root.

The leftover quadratic gives c = −1 +
√

3 as the physical answer. ♣
2.37. Stick on a circle

(a) From Problem 2.18 (using the same notation), we have Ff = N sin θ/(1+cos θ).
But Ff ≤ µN , so we must have µ ≥ sin θ/(1 + cos θ).


