PHYS 2400	HW 4	Spring semester 2025
Name:		
Date:		
Collaborators:		
(Collaborators submit their indi	vidually written assign:	ments together and in person)

Homework rules:

Show your work and indicate your reasoning in order to receive credit.

Guessing answers is not a solution.

You can use calculators, Computer Algebra systems, or any programming in general **only if the problem statement requests that**.

To solve the problems, use the methods that are taught in this class. If a problem statement includes directions for solutions, following those directions is required.

Question:	1	2	3	4	Total
Points:	10	20	25	15	70
Score:					

Instructor/grader comments:

Cauchy-Riemann equations

1. (10 points) Verify that that the following function

$$u(x,y) = x^2 - 3y^2$$

cannot be a real part of any complex function f(z).

In this problem, do not attempt to integrate Cauchy-Riemann equations.

2. (20 points) Use Cauchy-Riemann equations to find the analytic function f(z), z = x + iy, such that its real part is as following:

Re
$$f(z) = u(x, y) = e^x \sin y$$
,

and

$$f(i\pi) = 0.$$

Express the result for f(z) as a function of z only.

Answer: $f(z) = -i(e^z + 1)$.

The Cauchy integral theorem

3. (25 points) Evaluate the integral in terms of Gamma function:

$$I = \int_{0}^{\infty} \sin\left(x^{3}\right) \, \mathrm{d}x$$

Answer: $I = \frac{1}{2} \Gamma(\frac{4}{3})$.

Hints: consider the integral

$$\oint_C e^{-z^3} \, \mathrm{d}z$$

along the contour C sketched in Fig. 1; use the Euler formula; use the relation

$$\int_{0}^{\infty} e^{-x^3} dx \equiv \Gamma\left(\frac{4}{3}\right),\,$$

where $\boldsymbol{\Gamma}$ is gamma function.

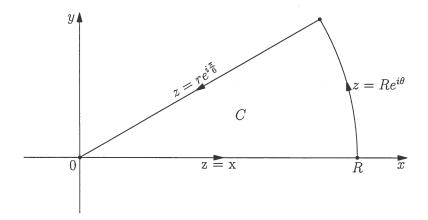


Figure 1: Integration contour for Problem 3. $(R \to \infty)$.

Accept without a proof that the integral over the circular arc in Fig. 1 goes to 0 as $R \to \infty$.

Cauchy integral formula

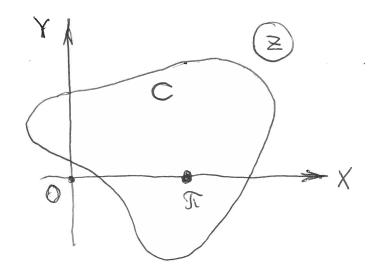
4. (15 points) Evaluate the integral

$$I = \oint\limits_C \frac{e^{-iz}}{z^2(z-\pi)} \, \mathrm{d}z,$$

where C is a closed contour in the complex plane z that includes the point $z = \pi$ and does not include the origin (see Fig. 2).

Answer: $I = -\frac{2i}{\pi}$.

Figure 2: Integration contour for Problem 4.



Page 3 of 3