
euler’s integrals

Spring semester 2025

https://www.phys.uconn.edu/˜rozman/Courses/P2400_25S/

Last modified: January 29, 2025

1 The Gamma function

In the eighteenth century, Leonhard Euler (a Swiss-born mathematician and physicist,
1707-1783) concerned himself with the problem of interpolating between factorials,

n! ≡ n · (n− 1) · (n− 2) · . . . · 2 · 1 , (1)

that are defined for integer n. This problem led Euler in 1729 to the gamma function, a
generalization of the factorial function that gives meaning to x! when x is any positive
number. Furthermore, the Gamma function can be extended to negative numbers and as
well as to complex numbers.

Consider the function Γ (x) defines as following integral,

Γ (x) ≡
∞∫

0

tx−1e−t dt (2)

which is convergent for x − 1 > −1, i.e. x > 0. Integral Eq. (2) is known as the Euler integral
of the second kind.

Using the relation e−t dt = −d
(
e−t

)
and integrating Eq. (2) by parts once, we get:

Γ (x) = −
∞∫

0

tx−1 d
(
e−t

)
=
���

����*
0

− tx−1 e−t
∣∣∣∣∣∞
0

+

∞∫
0

e−t d
(
tx−1

)

= (x − 1)

∞∫
0

tx−2 e−t dt = (x − 1)Γ (x − 1), (3)
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where in order the integral for Γ (x − 1) to exist, x must be large than 1.

Repeatedly integrating by parts, we obtain,

Γ (x) = (x − 1)Γ (x − 1) = (x − 1)(x − 2)Γ (x − 2) = (x − 1)(x − 2)(x − 3)Γ (x − 3) = . . . (4)

If x = n is a positive integer, then repeating the integration by parts we eventually arrive
to the expression:

Γ (n) = (n− 1) · (n− 2) · . . . · 2 · Γ (1). (5)

Noticing that

Γ (1) =

∞∫
0

e−t dt = 1, (6)

we conclude that for an positive integer argument n,

Γ (n) = (n− 1)! (7)

The gamma function has been used as a means of generalizing functions, operations, etc.,
which are commonly defined in terms of factorials. In addition, the gamma function is
useful in the evaluation of many non-elementary integrals and in the definition of other
special functions. A graph of Γ (x) is shown in Fig. 1.

Figure 1: The gamma
function. The (red) dots
mark the values of n! for
n = 1,2,3,4 (color online).
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To obtain another useful integral representation of Γ (x), let’s set the integration variable in
Eq. (2) to t = u2, dt = 2udu, 0 ≤ u <∞. We get

Γ (x) = 2

∞∫
0

u2x−1e−u
2

du. (8)

In particular,

Γ

(1
2

)
= 2

∞∫
0

e−u
2

du =

∞∫
−∞

e−u
2

du. (9)

The integral Eq. (9) is known as Gaussian integral.

Gamma function satisfies the following identity for all complex z:

Γ (z)Γ (1− z) =
π

sin(πz)
, (10)

referred to as the Euler’s reflection formula.

Another remarkable property of Gamma function is so-called Legendre duplication formula:

Γ (2z) =
22z−1
√
π

Γ (z)Γ
(
z+

1
2

)
. (11)

Although the definition of the gamma function – Eq. (2) – is only valid (on the real axis)
for positive arguments, its domain can be extended with analytic continuation to negative
arguments by shifting the negative argument to positive values by using either the Euler’s
reflection formula Eq. (10) or the fundamental property Eq. (3) written in the form,

Γ (x − 1) =
Γ (x)
x − 1

. (12)

Example 1. Evaluate the integral:

I =

∞∫
0

x4e−x
3
dx. (13)

Let u = x3, then

x = u
1
3 , x4 = u

4
3 , dx =

1
3
u−

2
3 du, 0 ≤ u <∞. (14)

I =

∞∫
0

x4e−x
3
dx =

1
3

∞∫
0

u
4
3u−

2
3 e−udu =

1
3

∞∫
0

u
2
3 e−udu =

1
3

∞∫
0

u
5
3−1e−udu =

1
3
Γ

(5
3

)
. (15)
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Example 2. Fractional-order derivatives:

In addition to generalizing the notion of factorials, the gamma function can be used in a
variety of situations to transform a discrete processes into a continuous one.

We can illustrate the concept of fractional derivatives by first recalling the derivative
formula from calculus:

dn

dxn
xa = a (a− 1) · · · (a−n+ 1)xa−n, a ≥ 0, n = 1,2,3, . . . (16)

In terms of the gamma function, we can rewrite Eq. (16) as follows:

dn

dxn
xa =

Γ (a+ 1)
Γ (a−n+ 1)

xa−n. (17)

The right-hand side of this expression is meaningful for any real number n for which
Γ (a− n+ 1) is defined. Hence, we assume that the same is true of the left-hand side and
write

dν

dxν
xa =

Γ (a+ 1)
Γ (a− ν + 1)

xa−ν , (18)

where ν is not restricted to integer values. Equation Eq. (18)) provides a method of
computing fractional-order derivatives of polynomials.

2 The Beta function

Another function useful in various applications is the beta function, often called the eulerian
integral of the first kind.

B(x,y) ≡
1∫

0

tx−1(1− t)y−1dt. (19)

If we make the change of variable u = 1− t, we find

B(x,y) =

1∫
0

(1−u)x−1uy−1dt. (20)

from which we deduce the symmetry property

B(x,y) = B(y,x). (21)
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We obtain another representation of the Beta function if we make the following change of
integration variable:

t = sin2θ, 0 ≤ θ ≤ π
2
, dt = 2cosθ sinθdθ, (22)

B(x,y) = 2

π
2∫

0

sin2x−1θ cos2y−1θdθ. (23)

To establish the relation between Beta and Gamma functions, let’s calculate the following
product using the integral representation Eq. (8) for Gamma function:

Γ (x)Γ (y) = 4

∞∫
0

u2x−1e−u
2

du

∞∫
0

v2y−1e−v
2

dv = 4

∞"
0

u2x−1v2y−1e−(u2+v2) dudv. (24)

The presence of the term u2 + v2 in the integrand suggests the change of variables from
cartesian (u,v) to polar (r,θ):

u = r cosθ, v = r sinθ, r2 = u2 + v2, 0 ≤ r <∞, 0 ≤ θ ≤ π
2
, dudv→ r drdθ. (25)

Thus,

Γ (x)Γ (y) = 4

∞∫
0

r2(x+y)−1e−r
2

dr

π
2∫

0

sin2x−1θ cos2y−1θdθ = Γ (x+ y)B(x,y). (26)

Therefore,

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

. (27)

We now use Eq. (27) to calculate the value Γ
(

1
2

)
. On the one hand, from Eq. (23),

B
(

1
2 ,

1
2

)
= π. On the other hand, from Eq. (27), B

(
1
2 ,

1
2

)
= Γ 2

(
1
2

)
. Therefore,

Γ

(1
2

)
=
√
π. (28)
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Example 1. Find the area enclosed by the curve x4 + y4 = 1 (see Fig. 2).

y(x) =
(
1− x4

) 1
4 , −1 ≤ x ≤ 1. (29)

A = 4

1∫
0

y(x)dx. (30)

Let u = x4, then

x = u
1
4 , dx =

1
4
u−

3
4 du, 0 ≤ u ≤ 1. (31)

A = 4
1
4

1∫
0

u−
3
4 (1−u)

1
4 du =

1∫
0

u
1
4−1(1−u)

5
4−1 du = B

(1
4
,
5
4

)
=
Γ
(

1
4

)
Γ
(

5
4

)
Γ
(

3
2

) . (32)

Figure 2: The area enclosed by
the curve x4 + y4 = 1 (color on-
line).
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We can simplify the answer Eq. (32) using the relations:

Γ

(5
4

)
= Γ

(1
4

+ 1
)

=
1
4
Γ

(1
4

)
, Γ

(3
2

)
= Γ

(1
2

+ 1
)

=
1
2
Γ

(1
2

)
=
√
π

2
. (33)

Thus,

A =
Γ
(

1
4

)
Γ
(

5
4

)
Γ
(

3
2

) =
Γ
(

1
4

)
· 1

4 Γ
(

1
4

)
√
π

2

=
Γ 2

(
1
4

)
2
√
π

. (34)
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