
induced emf in a circular loop

Spring semester 2025

https://www.phys.uconn.edu/˜rozman/Courses/P2400_25S/

Last modified: February 24, 2025

A circular wire loop of radius a has its center at a distance d0 (d0 > a) from a long straight
wire. The wire is in the plane of the loop. (See Fig. 1.) The current in the long wire is
changing, I = I(t). What is the induced emf in the loop?

Figure 1: A long straight wire carrying cur-
rent I(t) and a circular wire loop of radius
a with the center distance d0 from the wire
(d0 > a). The wire is in the plane of the loop.

I(t)
a

d0

The magnitude of the emf induced in the loop is

ε =
∣∣∣∣∣dΦdt

∣∣∣∣∣ , (1)

where Φ is the magnetic flux through the loop,

Φ =
∫

BndA, (2)

Bn is the component of the magnetic field perpenducular to the plane of the loop; the
integration is over the area of the loop. The magnetic field produced by the wire at a
distance d from the wire,

Bn =
µ0I

2πd
. (3)
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Calculate emf using cylindrical symmetry of the field

Figure 2: A long straight wire carry-
ing current I(t) and a circular wire
loop of radius a with the center dis-
tance d0 from the wire. The wire is
in the plane of the loop

I(t)

d0

d0+x

x

dx

√
a2−x2

Let’s use the symmetry of the magnetic field (see Fig. 2) to calculate the magnetic flux Φ ,
Eq. (2).

The magnitude of the magnetic field depends only on the distance to the wire:

Bn(x) =
µ0I

2π(d0 + x)
. (4)

The area element, dA, is as follows:

dA = 2
√
a2 − x2 dx. (5)

Therefore, the flux through the loop is given by the following expression:

Φ =

a∫
−a

Bn(x)dA =
µ0I

π

a∫
−a

√
a2 − x2

d0 + x
dx =

µ0I a

π

1∫
−1

√
1−u2

β +u
du. (6)

Here

β ≡ d0

a
, 1 < β <∞, (7)

is the characteristic dimensionless parameter of the problem.

In the last integral we introduced a new integration variable, u:

x = au, dx = adu, u =
x
a
, −1 ≤ u ≤ 1. (8)
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Introducing new integration variable, φ:

u = sinφ, dx = cosφdφ, −π
2
≤ φ ≤ π

2
, (9)

we obtain:

Φ =
µ0I a

π

π
2∫
−π

2

cos2φ

β + sinφ
dφ =

µ0I a

2π

π∫
−π

cos2φ

β + sinφ
dφ. (10)

To evaluate the integral in Eq. (10),

I(β) ≡
π∫
−π

cos2φ

β + sinφ
dφ, (11)

let’s rewrite it in the form
I(β) =

1
2

Re {J(β)} , (12)

where

J(β) ≡
2π∫
0

e2iφ + 1
β + sinφ

dφ. (13)

To obtain Eqs. (12)–(13) we used the relation

cos2φ =
(
eiφ + e−iφ

2

)2

=
1
2

(
e2iφ + e−2iφ

2
+ 1

)
=

1
2

[cos(2φ) + 1] =
1
2

Re
{
e2iφ + 1

}
. (14)

Proceeding to the integration in the complex z-plane,

z = eiφ, dφ =
dz
iz

, sinφ =
1
2i

(
z − 1

z

)
, e2iφ = z2. (15)

The integration contour is the unit circle |z| = 1.

J(β) =
1
i

∮
|z|=1

z2 + 1(
β + z

2i −
1

2iz

) dz
z

= 2
∮
|z|=1

z2 + 1
z2 + 2iβz − 1

dz (16)

The poles of the integrand are given by the roots of the quadratic polynomial in the
denominator:

z2 + 2iβz − 1 = 0. (17)
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The roots are:
zin,out = −iβ ± i

√
β2 − 1 = i

(
−β ±

√
β2 − 1

)
. (18)

zin and zout are imaginary. Since zinzout = -1, only one root, zin, the one with the smaller
absolute value, is inside the integration contour:

zin = i
(√

β2 − 1− β
)
. (19)

Figure 3: Integration contour for Eq. (16).

y

x

0

1

zin

zout

z = eiϕ

J(β) = 4πiRes
(

z2 + 1
(z − zin)(z − zout)

, z = zin

)
= 4πi

z2
in + 1

zin − zout
(20)

= 2π
1−

(√
β2 − 1− β

)2√
β2 − 1

= 4π
(
β −

√
β2 − 1

)
. (21)

The magnetic flux,

Φ = µ0I a
(
β −

√
β2 − 1

)
= µ0I d0

(
1−

√
1− β−2

)
. (22)

Finally, the emf in the loop is

ε =
∣∣∣∣∣dΦdt

∣∣∣∣∣ = µ0d0

(
1−

√
1− β−2

) ∣∣∣∣∣dIdt

∣∣∣∣∣ . (23)
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Consistency check

We can verify the result Eq. (22) by analyzing the limit a≪ d0 (β≫ 1) when the magnetic
field through the loop is approximately uniform. We expect the flux to be equal to the
product of the area of the loop by the value of the magnetic field in the center of the loop:

Φ ≈
µ0I

2πd0
πa2 =

µ0Ia
2

2d0
. (24)

Now, if we expand the square root in Eq. (22),√
1− β−2 ≈ 1− 1

2β2 , (25)

we get

Φ = µ0Id0

(
1−

√
1− β−2

)
≈ µ0Id0

[
1− 1 +

1
2
a2

d2
0

]
=
µ0Ia

2

2d0
(26)

as expected.
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