COURSE CALENDAR

MATHEMATICAL METHODS FOR THE PHYSICAL SCIENCES

Spring semester 2025

https://www.phys.uconn.edu/~rozman/Courses/P2400_25S/

Last modified: May 2, 2025

The chapter, section, and the page numbers below refer to the following editions of the course textbook: **HC** – Hung Cheng, *Advanced Analytic Methods in Applied Mathematics, Science, and Engineering, Luban Press, 2006*;

Tuesday	Thursday
Jan 21st Lecture 1	Jan 23rd Lecture 2
Computer algebra systems: a very short introduction to	Differentiating under the integral sign (handout)
Mathematica (handout)	Homework 1 assigned: due on 1/30/2025
Jan 28th Lecture 3	Jan 30th Lecture 4
Gamma function, $\Gamma(x)$; Gaussian integrals; (handout)	Beta function, $B(x,y)$ (handout)
	Homework 2 assigned: due on 2/6/2025
Feb 4th Lecture 5	Feb 6th
Complex numbers, HC, Ch. 2, pp. 35–41	
Euler's formula (handout)	Classes cancelled due to snow storm
Coordinate and polar form of complex numbers; powers of complex numbers	
Feb 11th Lecture 6	Feb 13th Lecture 7
Complex functions. Derivative of a complex function.	Cauchy-Riemann conditions, II.
Analytic functions. Cauchy-Riemann conditions. HC , Ch. 2, pp. 41–47.	Integrals of complex functions. Cauchy's integral theorem (handout).
Homework 3 assigned: due on 2/18/2025	· ·
Feb 18th Lecture 8	Feb 20th Lecture 9
Midterm I assigned; Due on 2/25/2025	Applications of Cauchy's theorem, II (handout)
Deformation of integration contours. HC, Ch. 2, pp. 49–50.	Cauchy's integral formula, II. HC , Ch. 2, pp. 51–53.
Applications of Cauchy's theorem, (handout)	
Cauchy's integral formula. HC , Ch. 2, pp. 51–53.	
Feb 25th Lecture 10	Feb 27th Lecture 11
Liouville theorem. (handout)	Evaluating real integrals (handout); HC, Ch. 2, pp. 59–70.
Taylor and Laurent series. HC, Ch. 2, pp. 53–57.	Homework 4 assigned: due on 3/6/2025
Poles, residues, Cauchy residue theorem. HC , Ch. 2, pp. 58–59.	

Tuesday	Thursday
Mar 4th Lecture 12	Mar 6th Lecture 13
Method of residues, II. HC, Ch. 2, pp. 59–70.	Method of residues, III.
	Higher-order poles.
	Constructing "terrible" integrals (handout)
	Homework 5 assigned: due on 3/13/2025
Mar 11th Lecture 14	Mar 13th Lecture 15
Laplace method for differential equations (handout)	Laplace method for differential equations, II (handout)
	Harmonic oscillator in quantum mechanics (handout).
	Homework 6 assigned: due 3/27/2025
Mar 18th	Mar 20th
Spring Recess – No classes	Spring Recess – No classes
Mar 25th Lecture 16	Mar 27th Lecture 17
Laplace method for integrals (handout).	Midterm II assigned; Due on 4/3/2025
	Laplace method for integrals, II (handout).
Apr 1st Lecture 18	Apr 3rd Lecture 19
Laplace method for integrals, III (handout).	Integration of fast-oscillating functions. The method of
Moving maximama. Asymptotics for Gamma function.	stationary phase (handout).
	Homework 7 assigned: due on 4/10/2025
Apr 8th Lecture 20	Apr 10th Lecture 21
Integration of fast-oscillating functions, II. Integration by	Review of Midterm II.
parts. (handout).	Integration of fast-oscillating functions, III (handout).
	Homework 8 assigned: due on 4/17/2025
Apr 15th Lecture 22	Apr 17th Lecture 23
Perturbation methods I. Regular perturbations (handout).	Perturbation methods II. Singular perturbations (handout).
	Homework 9 assigned: due on 5/1/2025
Apr 22nd Lecture 24	Apr 24th Lecture 25
Review of HW8	Boundary layers, II (handout).
Perturbation methods III. Boundary layers (handout).	
Apr 29th Lecture 26	May 1st Lecture 27
Midterm III assigned	The method of averaging, II (handout).
Due on Thu, May 8, 2025, 6 pm – 8 pm, in GS-119	
Weakly-nonlinear oscillators. The method of averaging. (handout).	
May 6th	May 8th
Week of Finals	Week of Finals