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1 Oscillator with nonlinear friction

Let’s consider the following second order non-linear differential equation

d2x

dt2
+ ε

(
dx
dt

)3

+ x = 0, ε > 0 (1)

with the initial conditions
x(0) = x0 , ẋ(0) = v0 . (2)

Here and below we interchangeably use the notations ẋ and dx
dt for the first derivative with

respect to time-like independent variable t, and ẍ and d2x
dt2 for the second derivative.

The equation describes a non-liner oscillator with the “friction” force that is proportional
to the third power of the velocity. The parameter ε is a positive parameter that describes
the rate of the energy loss, dE/dt, in the system (dE/dt ∼ ε, see Eq. (12)). Equation (1) has
no exact analytic solutions, therefore below we compare our analytics with the results of
numerical calculations.

1.1 Numerical integration

To solve Eq. (1) numerically, we introduce a new dependent variable, y = ẋ and rewrite
Eq. (1) as a system of two first order differential equations for two unknown x(t) and y(t),

dx
dt

= y,

dy
dt

= −εy3 − x.
(3)
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A typical result of the numerical integration of Eqs. (3) is presented in Fig. 1.
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Figure 1: Typical solution of Eq. (1) for weak nonlinearity: ε = 0.2 (solid line). The initial
conditions are x(0) = 1, ẋ(0) = 0. The approximation Eq. (37) is also shown (dashed line).

1.2 Regular perturbation theory for nonlinear oscillator

ẍ+ x = −εẋ3. (4)

A perturbative solution of this equation is obtained by expanding x(t) as a power series
in ε:

x = x0 + εx1 + ε2x2 + . . . , (5)

Page 2 of 22



PHYS 2400 Nonlinear oscillators Spring semester 2025

where x0(0) = 1, ẋ0(0) = 0, and xn(0) = 0, ẋn(0) = 0 for n ≥ 1. Substituting Eq. (5) into
Eq. (4) and equating coefficients of like powers of ε gives a sequence of linear differential
equations of which all but the first are inhomogeneous:

ẍ0 + x0 = 0, (6)
ẍ1 + x1 = −ẋ3

0, (7)
. . . . . .

ẍn + xn = −ẋ3
n−1, (8)

. . . . . .

The solution of Eq. (6) which satisfies x0(0) = 1, ẋ0(0) = 0 is

x0(t) = cos(t). (9)

The differential equation Eq. (7) for the first correction, x1, is then as follows:

ẍ1 + x1 = −ẋ3
0 = sin3(t) =

3
4

sin(t)− 1
4

sin(3t), x1(0) = 0, ẋ1(0) = 0. (10)

Its solution,

x1(t) =
9

32
sin(t) +

1
32

sin(3t)− 3
8
t cos(t). (11)

There is a serious problem with the solution Eq. (11). The amplitude of oscillation of the
solution for x1(t) grows unbounded as t →∞. The term t cos(t) in the solution, whose
absolute value grows with t, is said to be a secular term. The secular term has appeared
because sin3(t) on the right of Eq. (10) contains a component, ∼ sin(t), whose frequency
equals the natural frequency of the unperturbed oscillator, i.e. because the inhomogeneous
term ∼ sin(t) is itself a solution of the homogeneous equation associated with Eq. (10):
ẍ1 + x1 = 0. In general, secular terms always appear whenever the inhomogeneous term
is itself a solution of the associated homogeneous constant-coefficient differential equa-
tion. A secular term always grows more rapidly than the corresponding solution of the
homogeneous equation by at least a factor of t.

However, the correct solution of Eq. (4), x(t), remains bounded for all t. Indeed, let’s
multiply Eq. (4) by ẋ.

ẋẍ+ ẋx = −εẋ4. (12)

Rearraging terms in the left hand side, we obtain:

ẋẍ+ ẋx =
1
2

d
dt

(
dx
dt

)2

+
1
2

d
dt
x2 =

d
dt

1
2

(
dx
dt

)2

+
1
2
x2

 =
dE
dt
, (13)
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where

E ≡ 1
2

(
dx
dt

)2

+
1
2
x2 =

1
2
ẋ2 +

1
2
x2 (14)

is the mechanical energy of the oscillator. The energy Eq. (14) is always non-negative.

From Eqs. (12), (13),
dE
dt

= −εẋ4 ≤ 0. (15)

Therefore,
E(t) ≤ E(0) (16)

which means that that neither x(t) nor ẋ can grow unbounded, in contradiction with the
result Eq. (11).

1.3 The method of averaging

To obtain an approximate analytic solution of Eq. (1), instead of perturbation theory, we
use a powerful method called the method of averaging. It is applicable to equations of the
following general form:

d2x

dt2
+ εF

(
x,

dx
dt

)
+ x = 0, (17)

where in our case

F

(
x,

dx
dt

)
=

(
dx
dt

)3

. (18)

We seek a solution to Eq. (17) in the form:

x = a(t)cos(t +ψ(t)) , (19)

dx
dt

= −a(t)sin(t +ψ(t)) . (20)

The motivation for this ansatz is that when ε is zero, Eq. (17) has its solution of the form
Eq. (19) with a and ψ constants. For small values of ε we expect the same form of the
solution to be approximately valid, but now a and ψ are expected to be slowly varying
functions of t.

Differentiating Eq. (19) and requiring Eq. (20) to hold, we obtain the following relation:

da
dt

cos(t +ψ(t))− a
dψ
dt

sin(t +ψ(t)) = 0. (21)
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Differentiation of Eq. (20) and substitution the result into Eq. (17) gives

−da
dt

sin(t +ψ)− a
dψ
dt

cos(t +ψ) = −εF
(
acos(t +ψ) ,−asin(t +ψ)

)
, (22)

where in our case

F
(
acos(t +ψ) ,−asin(t +ψ)

)
= −a3 sin3 (t +ψ) . (23)

Solving Eqs. (21) and (22) for
da
dt

and
dψ
dt

, we obtain the following system of two differential
equations:

da
dt

= εF
(
acos(t +ψ) ,−asin(t +ψ)

)
sin(t +ψ) (24)

dψ
dt

=
ε
a
F
(
acos(t +ψ) ,−asin

(
t +ψ

)
cos(t +ψ

)
, (25)

or, specifically to our case,

da
dt

= −εa3 sin4 (t +ψ) (26)

dψ
dt

= −εa2 sin3 (t +ψ)cos(t +ψ). (27)

So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small.

Hence a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ψ(t) on the right hand sides of Eqs. (26) and (27) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

1
2π

2π∫
0

dφ. . . , (28)

where φ = t +ψ.

Eqs. (26) and (27) become

da
dt

= −εa3 1
2π

2π∫
0

dφ sin4 (φ) , (29)

dψ
dt

= −εa2 1
2π

2π∫
0

dφ sin3 (φ)cos(φ) . (30)
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The right hand side of Eq. (30) is zero:

2π∫
0

dφ sin3 (φ)cos(φ) =

2π∫
0

sin3 (φ) d(sin(φ)) =
1
4

sin4 (φ)
∣∣∣∣∣2π
0

= 0. (31)

The averaging in Eq. (29) can be done using the following trigonometric identity:

sin2(φ) =
1
2

(1− cos(2φ)) .

1
2π

2π∫
0

dφcos2(nφ) =
1

2π

2π∫
0

dφsin2(nφ) =
1
2
, n = 1,2, . . .

1
2π

2π∫
0

dφcos(nφ) =
1

2π

2π∫
0

dφsin(nφ) = 0, n = 1,2, . . .

1
2π

2π∫
0

dφsin4(φ) =
1

2π

2π∫
0

dφ
(1
2

(1− cos(2φ))
)2

=

=
1
4

1
2π

2π∫
0

dφ
(
1− 2cos(2φ) + cos2(2φ)

)
=

=
1
4

(
1 +

1
2

)
=

3
8

(32)

The averaged equations are as following:

da
dt

= −ε3
8
a3 (33)

dψ
dt

= 0 (34)

The solution of Eq. (34) is
ψ = ψ0 = const, (35)

where ψ0 is determined by the initial conditions.
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Eq. (33) can be solved by separating the variables:

da
a3 = −3

8
εdt −→ 1

a2(t)
=

3
4
εt +

1

a2
0

−→ a(t) =
1√

3
4εt +

1

a2
0

, (36)

where a0 = a(0) is the amplitude of oscillations at t = 0. Finally,

x(t) =
cos(t +ψ0)√

3
4εt +

1

a2
0

, ẋ(t) = −
sin(t +ψ0)√

3
4εt +

1

a2
0

. (37)

The integration constants a0 and ψ0 are determined from the initial conditions,

x(0) = a0 cosψ0, ẋ(0) = −a0 sinψ0, (38)

a0 =
√
x2(0) + ẋ2(0), ψ0 = − ẋ(0)

x(0)
. (39)

2 Van der Pol oscillator

The second order non-linear autonomous differential equation

d2x

dt2
+ ε

(
x2 − 1

) dx
dt

+ x = 0, ε > 0 (40)

is called van der Pol equation. The parameter ε is positive and indicates the nonlinearity
and the strength of the damping. The equation models a non-conservative system in which
energy is added to and subtracted from the system, resulting in a periodic motion called a
limit cycle. The sign of the “coefficient” in the damping term in Eq. (40),

(
x2 − 1

)
changes,

depending whether |x| is larger or smaller than one, describing the inflow and outflow of
the energy.

The equation was originally proposed in the late 1920-th to describe stable oscillations in
electrical circuits employing vacuum tubes.

Van der Pol oscillator is the example of a system that exibits the so called limit cycle. A limit
cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not
closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories
approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit
cycle is in general unstable.
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Stable limit cycles model systems, e.g. the beating of a heart, that exhibit self-sustained
oscillations. These systems oscillate even in the absence of external periodic forcing. There
is a standard oscillation of some preferred period, waveform, and amplitude. If the system
is perturbed slightly, it returns to the standard cycle.

Limit cycles are inherently nonlinear phenomena. They can’t occur in linear systerns.
Of course, a linear system, such as a linear differential equation, can have closed orbits
– periodic solutions, but they won’t be isolated. If x(t) is a periodic solution, then so
is αx(t) for any constant α , 0. Hence x(t) is surrounded by a ’family’ of closed orbits.
Consequently, the amplitude of a linear oscillation is set entirely by its initial conditions.
Any slight disturbance to the amplitude will persist forever. In contrast, limit cycle
oscillations are determined by the structure of the system itself.

Limit cycles are only possible in systems with dissipation. System that conserve energy do
not have isolated closed trajectories . . .

2.1 Numerical integration

Let’s write Eq. (40) as a system of first order ordinary differential equations,
dx
dt

= y,

dy
dt

= −ε
(
x2 − 1

) dx
dt
− x,

(41)

where we introduced a new dependent variable y(t), y(t) ≡ dx
dt .

The results of numerical integration of Eqs. (41) for the initial conditions x(0) = 1, ẋ(0) =
y(0) = 0, are presented in Figs. 2–3.

Numerical integration of Eq. (41) shows that every initial condition (except x = 0, ẋ = 0)
approaches a unique periodic motion. The nature of this limit cycle is dependent on the
value of ε. For small values of ε the motion is nearly harmonic.

Numerical integration shows that the limit cycle is a closed curve enclosing the origin in
the x-y phase plane. From the fact that Eqs. (41) are invariant under the transformation
x → −x, y → −y, we may conclude that the curve representing the limit cycle is point-
symmetric about the origin.
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Figure 2: Typical solution of van der Pol equation for small values of ε; top graph – x(t),
bottom graph – ẋ(t); ε = 0.1 (solid line). The approximations Eq. (75), (76) shown as
dashed line.

2.2 Averaging

In order to obtain information regarding the approach to the limit cycle, we use the method
of averaging. We can rewrite the van der Pol equations of the following general form:

d2x

dt2
+ x = −εF

(
x,

dx
dt

)
, (42)

where

F

(
x,

dx
dt

)
=

(
x2 − 1

) dx
dt
. (43)
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Figure 3: Typical phase space trajectory of van der Pol equation for small values of ε.

Recall that the method of averaging seeks a solution to Eq. (42) in the form:

x = a(t)cos(t +ψ(t)) , (44)

dx
dt

= −a(t)sin(t +ψ(t)) . (45)

Our motivation for this ansatz is, as in the example before, that when ε is zero, Eq. (42) has
its solution of the form Eq. (44) with a and ψ constants. For small values of ε we expect
the same form of the solution to be approximately valid, but now a and ψ are expected to
be slowly varying functions of t.
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Differentiating Eq. (44) and requiring Eq. (45) to hold, we obtain:

da
dt

cos(t +ψ(t))− a
dψ
dt

sin(t +ψ(t)) = 0. (46)

Differentiating Eq. (45) and substituting the result into Eq. (42) gives

−da
dt

sin(t +ψ)− a
dψ
dt

cos(t +ψ) = −εF (a(t)cos(t +ψ) ,−a(t)sin(t +ψ)) . (47)

Solving Eqs. (46) and (47) for
da
dt

and
dψ
dt

, we obtain:

da
dt

= εF (a(t)cos(t +ψ) ,−a(t)sin(t +ψ)) sin(t +ψ) (48)

dψ
dt

=
ε
a
F (acos(t +ψ) ,−asin(t +ψ)cos(t +ψ) , (49)

where
F (. . .) = −a

(
a2 cos2 (t +ψ)− 1

)
sin(t +ψ) . (50)

da
dt

= −εa
(
a2 cos2 (t +ψ)− 1

)
sin2 (t +ψ) (51)

dψ
dt

= −ε
(
a2 cos2 (t +ψ)− 1

)
sin(t +ψ)cos(t +ψ) (52)

So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small.

Hence a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ψ(t) on the right hand sides of Eqs. (51) and (52) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

. . . ≡ ⟨ . . .⟩ ≡ 1
2π

2π∫
0

. . . dφ (53)

Eqs. (51) and (52) become

da
dt

= −εa3 cos2(φ)sin2(φ) + εa sin2(φ) (54)

dψ
dt

= −εa2 cos3(φ)sin(φ) + εcos(φ)sin(φ) (55)
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As shown in the Appendix,

cos3(φ)sin(φ) ≡ 1
2π
I3,1 = 0, (56)

cos(φ)sin(φ) ≡ 1
2π
I1,1 = 0, (57)

thus the right hand side of Eq. (55) is zero. Therefore,

dψ
dt

= 0, (58)

i.e.
ψ = const = ψ0, (59)

where ψ0 is an integration constant.

The averaged terms in Eq. (51) are as following:

cos2(φ)sin2(φ) ≡ 1
2π
I2,2 =

1
8
, (60)

sin2(φ) ≡ 1
2π
I2,0 =

1
2
, (61)

where Eq. (123) and (124) have been used.

Thus, the averaged Eq. (54) is
da
dt

=
ε
8
a (4− a2). (62)

Eq. (62) can be solved separating variables:

da
a (2− a) (2 + a)

=
ε
8

dt. (63)

Decomposing the left hand side into partial fractions,

1
a(2− a)(2 + a)

=
1
4

1
a

+
1
8

1
2− a

− 1
8

1
2 + a

, (64)

we obtain

2
da
a

+
da

2− a
− da

2 + a
= εdt, (65)

2
da
a
− d(2− a)

2− a
− d(2 + a)

2 + a
= εdt, (66)
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dlog
(
a2

)
−dlog |2− a| −dlog(2 + a) = εdt. (67)

Integrating both sides

log
(

a2

(a+ 2) |2− a|

)
= εt +C0, (68)

where C0 is an integration constant. Exponentiating, we obtain

a2

(a+ 2) |2− a|
= C1e

εt, (69)

where C1 = eC0 , or
a2 − 4
a2 = Ce−εt, (70)

where the integration constant can now be positive or negative.

Solving Eq. (70) for a2(t), we obtain,

a2(t) =
4

1−Ce−εt
. (71)

Letting t = 0 in the last equation, we obtain the relation between a0 = a(0) and the
integration constant:

C = 1− 4

a2
0

. (72)

Finally,

a2(t) =
4

1 +
(

4
a2

0
− 1

)
e−εt

(73)

and
a(t) =

2√
1 +

(
4
a2

0
− 1

)
e−εt

. (74)

Finally,

x(t) = a(t)cos(t +ψ(t)) =
2 cos(t +ψ0)√
1 +

(
4
a2

0
− 1

)
e−εt

, (75)

ẋ(t) = −a(t)sin(t +ψ(t)) = −
2 sin(t +ψ0)√
1 +

(
4
a2

0
− 1

)
e−εt

. (76)
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Since we are primary interested in the limit cycle solution of the van der Pol equation, let’s
consider the limit of the solution for large values of t. As t→∞ e−εt→ 0 therefore

a(t) ≈ 2−
(

4

a2
0

− 1
)
e−εt. (77)

This, for large t, t ≥ ε−1,

x(t) = a(t)cos(t +ψ(t)) =
(
2−

(
4

a2
0

− 1
))

cos(t +ψ0), (78)

ẋ(t) = −a(t)sin(t +ψ(t)) = −
(
2−

(
4

a2
0

− 1
))

sin(t +ψ0), (79)

are the parametric equations of the limit cycle in the phase plane.

3 Oscillator with the slowly changing frequency

The technique of averaging is applicable to nonlinear oscillators that are described by
differential equations with slow changing explicit time-dependent terms:

d2x

dt2
+ x = −εF

(
x,

dx
dt
, εt

)
, (80)

Here the new slow time dependence in the non-linear term is highlighted in bold.

Consider the oscillator with the slowly changing frequency.

d2x

dt2
+ω2(εt)x = 0, (81)

where
ω(εt) , 0. (82)

To reduce Eq. (81) to the form (81), consider the change of independent variable t:

τ = f (t) (83)

dx
dt

=
dx
dτ

dτ
dt

=
df
dt

dx
dτ
, (84)
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d2x

dt2
=

d
dt

(
dx
dt

)
=

d
dt

(
df
dt

dx
dτ

)
=

d2f

dt2
dx
dτ

+
df
dt

d
dt

(
dx
dτ

)
=

d2f

dt2
dx
dτ

+
df
dt

d
dτ

(
dx
dτ

)
df
dt

=
d2f

dt2
dx
dτ

+
(

df
dt

)2 d2x

dτ2 (85)

Substituting Eq. (85) into Eq. (81) and introducing the notations

ẋ =
dx
dτ
, ẍ =

d2x

dτ2 , (86)(
df
dt

)2

ẍ+
d2f

dt2
ẋ+ω2(εt)x = 0. (87)

Let’s choose (
df
dt

)2

=ω2(εt) →
df
dt

=ω(εt), (88)

then

τ =
∫ t

ω(εu)du, dτ =ω(εt)dt (89)

d2f

dt2
=

dω(εt)
dt

= εω′(T ), (90)

where
T = εt. (91)

Eq. (87) can be written as following:

d2x

dτ2 + ε
ω′(εt)
ω2(εt)

dx
dτ

+ x = 0. (92)

Eq. (92) is in the form Eq. (80). Using the method of averaging we obtain the following
equations for a(t) and ψ(t):

da
dτ

= −ε ω
′(εt)

ω2(εt)
a sin2(τ +ψ), (93)

dψ
dτ

= −ε ω
′(εt)

ω2(εt)
a sin(τ +ψ)cos(τ +ψ). (94)

Averaging Eq. (93), (94) we obtain:

da
dτ

= −ε
2
ω′(εt)
ω2(εt)

a, (95)

dψ
dτ

= 0. (96)
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Eq. (96) tells us that ψ = const, and we can chose

ψ = 0. (97)

Eq. (95) can be solved separating variables

da
a

= −ε
2
ω′(εt)
ω2(εt)

dτ = −ε
2
ω′(εt)
ω2(εt)

ω(εt)dt = −1
2
ω′(εt)
ω(εt)

d(εt). (98)

dlog(a) = −1
2

dlog(ω(εt)), (99)

log(a) = log

 1√
ω(εt)

+C′, (100)

a =
C√
ω(εt)

(101)

x(t) = a(t)cos(τ) =
C√
ω(εt)

cos
(∫ t

0
ω(εt′)dt′

)
. (102)

ẋ(t) = −C
√
ω(εt)

′
sin

(∫ t

0
ω(εt′)dt′

)
. (103)

E(t) =
1
2
ẋ2 +

1
2
ω(εt)2x2 =

C2

2
ω, (104)

E(t)
ω(εt)

= const. (105)

4 Problems

Problem 1. Find (a) the time dependence of the amplitude and (b) the frequency of
the Duffing oscillator:

ẍ+ x+ ϵx3 = 0, (106)

where ϵ is a small parameter (ϵ≪ 1); x(0) = 1, ẋ(0) = 0. Compare your analytic approxima-
tion with the numerical solution of the differential equation.
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Figure 4: Typical solution
of the Duffing equation
Eq. (106), ε = 0.2 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line).
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Problem 2. Find the time dependence of the amplitude of an oscillator with “dry”
friction:

ẍ+γ sign(ẋ) + x = 0, (107)

where γ is a small parameter (γ ≪ 1); x(0) = 1, ẋ(0) = 0,

sign(α) =


1, α > 0,
0, α = 0,
−1 α < 0.

Determine the time until the full stop.

Compare your analytic approximation with the numerical solution of the differential
equation.

Problem 3. Find the solution of the following nonlinear differential equation:

ẍ+ ϵẋ5 + x = 0, x(0) = x0, ẋ(0) = 0, (108)

where ϵ is a small positive parameter. Compare your analytic approximation with the
numerical solution of the differential equation.
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Figure 5: Typical solution
of the dry friction oscilla-
tor Eq. (107) for small val-
ues of γ ; γ = 0.05 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line).
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Figure 6: Typical solution
of the nonlinear friction os-
cillator Eq. (108) for small
values of ϵ; γ = 0.1 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line).
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Appendix A. Integrals for the method of averaging

The method of averaging requires the evaluation of integrals of the form

Ip,q =

2π∫
0

cosp x sinq xdx, (109)

where p and q are positive integers.

First, notice that the integration in Eq. (109) is over the period of the integrand, thus

2π∫
0

cosp x sinq xdx =

2π+u∫
u

cosp x sinq xdx (110)

for arbitrary u.

Ip,q is zero if at least one of p or q is odd. Indeed, consider separately the three possible
cases:

1. If p is even and q is odd, i.e. if p = 2m and q = 2n+ 1, then

I2m,2n+1 =

2π∫
0

cos2m(x)sin2n+1(x)dx =

π∫
−π

cos2m(x)sin2n+1(x)dx = 0 (111)

since the integrand is an odd function.

2. If both p and q are odd, i.e. p = 2m+ 1 and q = 2n+ 1, then

I2m+1,2n+1 =

2π∫
0

cos2m+1(x)sin2n+1(x)dx =
1
2

π∫
−π

cos2m(x)sin2n(x)sin(2x)dx = 0 (112)

since the integrand is again an odd function; here we used the identity cos(x) sin(x) =
1
2 sin(2x).

3. If p is odd and q is even, i.e. if p = 2m + 1 and q = 2n, then, using the identities
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sin(x) = cos
(
x − π2

)
and cos(x) = −sin

(
x − π2

)
,

I2m+1,2n =

2π∫
0

cos2m+1(x)sin2n(x)dx = −
2π∫
0

sin2m+1
(
x − π

2

)
cos2n

(
x − π

2

)
dx

= −

3
2π∫
− 1

2π

sin2m+1(u)cos2n(u)du = −
π∫
−π

sin2m+1(u)cos2n(u)du = 0 (113)

since the last integral is from an odd function.

To evaluate Ipq when both p and q are even, let’s proceed as following.

I2m,2n =

2π∫
0

(
cos2(x)

)m (
sin2(x)

)n
dx = 2

π∫
0

(
cos2(x)

)m (
1− cos2(x)

)n
dx

= 2

π
2∫

0

(
cos2(x)

)m (
1− cos2(x)

)n
dx+ 2

π∫
π
2

(
cos2(x)

)m (
1− cos2(x)

)n
dx. (114)

Let’s introduce the new integration variable,

u = cos2x, 0 ≤ u ≤ 1, du = −2cosx sinxdx. (115)

In the first integral in Eq. (115), 0 ≤ x ≤ π
2 , thus both cos(x) and sin(x) are positive, therefore

cos(x) = u
1
2 and sin(x) = (1−u)

1
2 . So,

du = −2u
1
2 (1−u)

1
2 dx, (116)

i.e.

dx = − du

2u
1
2 (1−u)

1
2

. (117)

In the second integral in Eq. (115), π2 ≤ x ≤ π, thus cos(x) is negative and sin(x) is positive,

therefore cos(x) = −u 1
2 and sin(x) = (1−u)

1
2 . So,

du = 2u
1
2 (1−u)

1
2 dx, (118)
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i.e.

dx =
du

2u
1
2 (1−u)

1
2

. (119)

Substituting Eqs. (118)–(119) into Eq. (114), we obtain

I2m,2n = −
0∫

1

um−
1
2 (1−u)n−

1
2 du +

1∫
0

um−
1
2 (1−u)n−

1
2 du = 2

1∫
0

um+ 1
2−1(1−u)n+ 1

2−1du. (120)

The last integral is B
(
m+ 1

2 ,n+ 1
2

)
, therefore

I2m,2n = 2B
(
m+

1
2
,n+

1
2

)
=

2Γ
(
m+ 1

2

)
Γ
(
n+ 1

2

)
Γ (m+n+ 1)

. (121)

In particular, Γ
(

1
2

)
=
√
π and Γ (1) = 1, thus

I0,0 =
2Γ 2

(
1
2

)
Γ (1)

= 2π. (122)

This trivial by itself result (obviously I0,0 =
∫ 2π

0
dx = 2π) confirms the correctness of

Eq. (121).

Furthermore, Γ
(
1 + 1

2

)
= 1

2Γ
(

1
2

)
= 1

2
√
π, Γ (2) = 1, Γ (3) = 2Γ (2) = 2, thus

I2,0 =
2Γ

(
1 + 1

2

)
Γ
(

1
2

)
Γ (2)

= Γ 2
(1
2

)
= π (123)

and

I2,2 =
2Γ 2

(
1 + 1

2

)
Γ (3)

=
π
4
. (124)

Finally, Γ
(
2 + 1

2

)
= 3

2Γ
(

3
2

)
= 3

4
√
π, and

I4,0 =
2Γ

(
2 + 1

2

)
Γ
(

1
2

)
Γ (3)

=
3π
4
. (125)
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