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Let’s consider the following second order non-linear differential equation

d?x dx 3
W-FE(E) +x=0, >0 (1)
with the initial conditions
x(0) =xq, x(0) =vy. (2)

The equation describes a non-liner oscillator with the “friction” force that is proportional
to the third power of the velocity. The parameter ¢ is a positive parameter that describes
the rate of the energy loss, dE/dt, in the system. Equation (1) has no exact analytic
solutions.

To obtain an approximate analytic solution of Eq. (1), we use a powerful method called
the method of averaging. It is applicable to equations of the following general form:

j—zt;c+eP(x,%)+x:O, (3)
where in our case . e
p(x,d_’;):(d_j) | (4)
We seek a solution to Eq. (3) in the form:
x = a(t)cos(t+1(t)), (5)
% = —a(t)sin(t+ (). (6)
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The motivation for this ansatz is that when ¢ is zero, Eq. (3) has its solution of the form
Eq. (5) with a and ¢ constants. For small values of ¢ we expect the same form of the
solution to be approximately valid, but now a and i are expected to be slowly varying
functions of t.

Differentiating Eq. (5) and requiring Eq. (6) to hold, we obtain the following relation:

da dy . _
acos(t+¢(t))—aasm(t+gb(t))_O. (7)
Differentiation of Eq. (6) and substitution the result into Eq. (3) gives
d
—% sin(t+ 1) — ad—fcos(t +1) = —eF(acos(t +1),—asin(t + 1) ), (8)
where in our case
F(acos(t+1,b),—asin(t+v,l))):—a3sin3(t+z,b). (9)
) da dy . . . .
Solving Eqgs. (7) and (8) for T and ar’ we obtain the following system of two differential
equations:
da . .
T - eP(acos(t+¢),—a51n(t+¢))sm(t+1/)), (10)
diy € .
il ;F(acos(tﬂ,b),—asm(t—i—yb))cos(t+41), (11)
or, specifically to our case,
% = —€a3sin4(t+z,b) (12)
d
d_lf = —ea’sin® (t+ ) cos(t + ). (13)
So far our treatment has been exact.
Now we introduce the following approximation: since ¢ is small, % and a4 e also small.

Hence a(t) and 1(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ¢ (¢) on the right hand sides of Eqgs. (12) and (13) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

27

1
ﬂfd(p..., (14)

0
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where ¢ =t + 1.
Egs. (12) and (13) become

da
dt

d
dt

4
—ea® — | d¢sint(¢),

A
—ea” — d¢sin3(¢)cos(¢).

The right hand side of Eq. (16) is zero:

21

0

The averaging in Eq. (15) can be done using the following trigonometric identity:

sin?(¢) =

21
21
jdcp sin’ (¢p)cos(¢) = Jsin3 (¢) d(sin(¢p)) = % sin* (¢)| =0.
0

%(1 —cos(2¢)).

21

J

271
Lfd cos?(n )—L Pd sin®(n )—1 n=1,2
2n ) 47 P)=ox ) 90 P=g n=b2e
0

21

27
1 1 [ .
Efd¢cos(n¢)—ﬂ d¢sin(ng)=0, n=1,2,...
0

27
%J-dqb sin*(¢)
0

J
0

271

. —fdcp(%(l —cos<z¢>>)2 =

o
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The averaged equations are as following;:

d
T =
dy
— =0
dt
The solution of Eq. (20) is
1 =1y = const,

where 1) is determined by the initial conditions.

Eq. (19) can be solved by separating the variables:

da _ 3£dt — =—ct+
a> 8 az(t)_4 a%

where ay = a(0) is the amplitude of oscillations at t = 0. Finally,

_ cos(t+ 1)

1
3
Z€t+ -
4o

x(t)

3
Z€t+_

2
ay

The integration constants ay and ¥, are determined from the initial conditions,

x(0) = ag cos o, x(0) = —agsinty,

ag = +/x%(0) + x2(0),
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