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Let’s consider the following second order non-linear differential equation

d2x

dt2
+ ε

(
dx
dt

)3

+ x = 0, ε > 0 (1)

with the initial conditions
x(0) = x0 , ẋ(0) = v0 . (2)

The equation describes a non-liner oscillator with the “friction” force that is proportional
to the third power of the velocity. The parameter ε is a positive parameter that describes
the rate of the energy loss, dE/dt, in the system. Equation (1) has no exact analytic
solutions.

To obtain an approximate analytic solution of Eq. (1), we use a powerful method called
the method of averaging. It is applicable to equations of the following general form:

d2x

dt2
+ εF

(
x,

dx
dt

)
+ x = 0, (3)

where in our case

F

(
x,

dx
dt

)
=

(
dx
dt

)3

. (4)

We seek a solution to Eq. (3) in the form:

x = a(t) cos(t +ψ(t)) , (5)
dx
dt

= −a(t) sin(t +ψ(t)) . (6)
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The motivation for this ansatz is that when ε is zero, Eq. (3) has its solution of the form
Eq. (5) with a and ψ constants. For small values of ε we expect the same form of the
solution to be approximately valid, but now a and ψ are expected to be slowly varying
functions of t.

Differentiating Eq. (5) and requiring Eq. (6) to hold, we obtain the following relation:

da
dt

cos(t +ψ(t))− a
dψ
dt

sin(t +ψ(t)) = 0. (7)

Differentiation of Eq. (6) and substitution the result into Eq. (3) gives

−da
dt

sin(t +ψ)− a
dψ
dt

cos(t +ψ) = −εF
(
acos(t +ψ) ,−asin(t +ψ)

)
, (8)

where in our case

F
(
acos(t +ψ) ,−asin(t +ψ)

)
= −a3 sin3 (t +ψ) . (9)

Solving Eqs. (7) and (8) for
da
dt

and
dψ
dt

, we obtain the following system of two differential
equations:

da
dt

= εF
(
acos(t +ψ) ,−asin(t +ψ)

)
sin(t +ψ), (10)

dψ
dt

=
ε
a
F
(
acos(t +ψ) ,−asin(t +ψ)

)
cos(t +ψ), (11)

or, specifically to our case,

da
dt

= −εa3 sin4 (t +ψ) (12)

dψ
dt

= −εa2 sin3 (t +ψ)cos(t +ψ). (13)

So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small.

Hence a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ψ(t) on the right hand sides of Eqs. (12) and (13) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

1
2π

2π∫
0

dφ. . . , (14)
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where φ = t +ψ.

Eqs. (12) and (13) become

da
dt

= −εa3 1
2π

2π∫
0

dφ sin4 (φ) , (15)

dψ
dt

= −εa2 1
2π

2π∫
0

dφ sin3 (φ)cos(φ) . (16)

The right hand side of Eq. (16) is zero:

2π∫
0

dφ sin3 (φ)cos(φ) =

2π∫
0

sin3 (φ) d(sin(φ)) =
1
4

sin4 (φ)
∣∣∣∣∣2π
0

= 0. (17)

The averaging in Eq. (15) can be done using the following trigonometric identity:

sin2(φ) =
1
2

(1− cos(2φ)) .

1
2π

2π∫
0

dφcos2(nφ) =
1

2π

2π∫
0

dφsin2(nφ) =
1
2
, n = 1,2, . . .

1
2π

2π∫
0

dφcos(nφ) =
1

2π

2π∫
0

dφsin(nφ) = 0, n = 1,2, . . .

1
2π

2π∫
0

dφsin4(φ) =
1

2π

2π∫
0

dφ
(1
2

(1− cos(2φ))
)2

=

=
1
4

1
2π

2π∫
0

dφ
(
1− 2cos(2φ) + cos2(2φ)

)
=

=
1
4

(
1 +

1
2

)
=

3
8

(18)
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The averaged equations are as following:

da
dt

= −ε3
8
a3 (19)

dψ
dt

= 0 (20)

The solution of Eq. (20) is
ψ = ψ0 = const, (21)

where ψ0 is determined by the initial conditions.

Eq. (19) can be solved by separating the variables:

da
a3 = −3

8
εdt −→ 1

a2(t)
=

3
4
εt +

1

a2
0

−→ a(t) =
1√

3
4εt +

1

a2
0

, (22)

where a0 = a(0) is the amplitude of oscillations at t = 0. Finally,

x(t) =
cos(t +ψ0)√

3
4εt +

1

a2
0

, ẋ(t) = −
sin(t +ψ0)√

3
4εt +

1

a2
0

. (23)

The integration constants a0 and ψ0 are determined from the initial conditions,

x(0) = a0 cosψ0, ẋ(0) = −a0 sinψ0, (24)

a0 =
√
x2(0) + ẋ2(0), ψ0 = − ẋ(0)

x(0)
. (25)
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