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1 The method of stationary phase

There is an immediate generalization of the Laplace integrals

b∫
a

f (t)exφ(t) dt (1)

which we obtain by allowing the function φ(t) in Eq. (1) to be complex. We may assume
that f (t) is real; if it were complex, f (t) could be decomposed into a sum of its real and
imaginary parts. However, allowing φ(t) to be complex poses nontrivial problems. We
consider the special case in which φ(t) is pure imaginary: φ(t) = iψ(t) where ψ(t) is real.
The resulting integral

I(x) =

b∫
a

f (t)eixψ(t) dt (2)

with f (t), ψ(t), a, b, x all real is called a generalized Fourier integral. When ψ(t) = t, I(x) is
an ordinary Fourier integral.

The method of stationary phase gives the leading asymptotic behavior of generalized
Fourier integrals having stationary points, ψ′ = 0. This method is similar to Laplace’s
method in that the leading contribution to I(x) comes from a small interval surrounding
the stationary points of ψ.
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To evaluate the integral

F(p) =

∞∫
0

ei λu
p

du, (3)

where p is real, p > 1, consider

J =
∮
C

eiλz
p

dz, (4)

where the contour C is sketched in Fig. 1. The integrand in Eq. (4) is analytic inside the
contour C, thus J = 0. On the other hand,

J = JI + JII + JIII , (5)

where JI is the integral along the positive real axis, JII is the integral along the circular
arc of the radius R→∞, an JIII is the integral (from infinity to the origin) along the ray
making the angle π

2p with the real axis. Notice first that

F(p) = JI . (6)

Next,
JII = 0. (7)

The proof of Eq. (7) is similar to the proof of Jordan’s lemma.

Finally, on the integration path for JIII :

z = rei
π
2p , dz = ei

π
2pdr, zp = rpei

π
2 = irp. (8)

Therefore

JIII = ei
π
2p

0∫
∞

e−λr
p

dr = −ei
π
2p

∞∫
0

e−λr
p

dr. (9)

The last integral can be evaluated by introducing the new integration variable

u = λrp, r = λ−
1
pu

1
p , dr =

1
p
λ−

1
pu

1
p−1du. (10)

Thus,
∞∫

0

e−λr
p

dr =
1
p
λ−

1
p

∞∫
0

e−uu
1
p−1du =

1
p
λ−

1
p Γ

(
1
p

)
= λ−

1
p Γ

(
1
p

+ 1
)
. (11)
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Combining Eqs. (5), (7), (9), (11), we obtain:

∞∫
0

eiλu
p

du = ei
π
2pλ−

1
p Γ

(
1
p

+ 1
)
. (12)

Similarly,
∞∫

0

e−iλu
p

du = e−i
π
2pλ−

1
p Γ

(
1
p

+ 1
)
. (13)

For the important particular case p = 2:

∞∫
0

e±iλu
2

du = e±i
π
4λ−

1
2

√
π

2
. (14)

Figure 1: The integration con-
tour for Eq. (4).
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Example 1. Find the leading term of the asymptotics of the following integral for
λ→∞:

I(λ) =

4∫
−3

cos
(
λsinh2(x)

)√
1 + x2 dx. (15)

Since only small |x|, such that |x| ∼ 1√
λ
≪ 1 are important,

sinhx ∼ x, (16)

cos
(
λsinh2(x)

)
∼ cos

(
λx2

)
(17)
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Figure 2: The graphs of the os-
cillating factor, cos

(
λsinh2(x)

)
in Eq. (15), for λ = 1, 4, 9.
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√
1 + x2 ∼ 1. (18)

I(λ) ∼ Re

4∫
−3

eiλx
2

dx ∼ Re

∞∫
−∞

eiλx
2

dx. (19)

New integration variable,

u2 = λx2 −→ x2 =
u2

λ
−→ x =

u
√
λ
−→ dx =

1
√
λ

du. (20)

I(λ) ∼ Re
1
√
λ

∞∫
−∞

eiu
2

du

︸     ︷︷     ︸
√
πei

π
4

=

√
π
λ

Re
(
ei

π
4
)

︸   ︷︷   ︸
1√
2

=

√
π
2λ

(21)

Figure 3: Asymptotics Eq. (21)
(solid line) compared to numeri-
cally evaluated Eq. (15) (dashed
line) for 2 ≤ λ ≤ 12.
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Example 2. Find the leading term of the asymptotics of the Bessel function J0(x) for
x→∞:

J0(x) ≡ 1
π

π
2∫
−π2

cos(xcosθ) dθ. (22)
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Recall that the Bessel function J0(x) is a solution of the following second order linear
differential equation:

xy′′ + y′ + xy = 0. (23)

Equation (23) belongs to the type that can be solved using Laplace method for ordinary
differential equations. Using the same notations that we used in the relevant handout, we
have here:

a2 = 0, b2 = 1, a1 = 1, b1 = 0, a0 = 0, b0 = 1. (24)

P (t) ≡
∑
n

ant
n = t, Q(t) ≡

∑
n

bnt
n = 1 + t2, (25)

∫
P (t)
Q(t)

dt =
∫

tdt
1 + t2

=
1
2

∫
d(1 + t2)

1 + t2
= ln

(
1 + t2

) 1
2 . (26)

Thus

Z ≡ 1
Q(t)

exp
(∫

P (t)
Q(t)

dt
)

=
(
1 + t2

)− 1
2 . (27)

The contour integral over yet unspecified contour C,

y(x) =
∫
C

ext
(
1 + t2

)− 1
2 dt, (28)

is therefore a solution of Eq. (23) if the function

extQ(t)Z(t) = ext
(
1 + t2

) 1
2 (29)

takes on the same values at the ends of the integration contour C.

Lets chose contour C as the one connecting the points ti = −i and tf = i. The values of the
function Eq. (29) are equal (and equals to 0) as required.

Therefore,

y(x) =

i∫
−i

ext
(
1 + t2

)− 1
2 dt (30)

is the solution of the Bessel equation Eq. (23). Let’s change the integration variable as
following:

t = −i cosθ, 0 ≤ θ ≤ π, dt = i sinθdθ
(
1 + t2

)− 1
2 =

1
sinθ

. (31)
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Thus,

y(x) ∼
π∫

0

e−ixcosθ dθ =

π∫
0

cos(xcosθ)dθ =

π
2∫
−π2

cos(xcosθ) dθ, (32)

which is (up to a multiplicative constant) integral Eq. (22).

Figure 4: Asymptotics Eq. (35)
(solid line) compared to numeri-
cally evaluated Eq. (22) (dashed
line) for 1 ≤ x ≤ 20.
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Returning to the original problem, let’s rewrite integral Eq. (22) in the exponential form:

J0(x) =
1
π

Re

π
2∫
−π2

eixcosθdθ. (33)

The stationary point of the phase factor is at θ = 0. Only small θ contribute to the integral.
Therefore.

cosθ ≈ 1− θ
2

2
. (34)

J0(x) ∼ 1
π

Reeix

π
2∫
−π2

e−i
xθ2

2 dθ ∼ 1
π

√
2
x

Reeix
∞∫
−∞

e−i
x
2θ

2
d
(√

x
2
θ

)

=
1
π

√
2
x

Re
(
eix
√
πe−i

π
4
)

=

√
2
πx

cos
(
x − π

4

)
(35)

Page 7 of 12



PHYS 2400 Integration of fast oscillating functions Spring semester 2024

Example 3. Find the leading term of the asymptotics of the Airy function, Ai(x), for
x→−∞:

Ai(x) ≡ 1
π

∞∫
0

cos
(
kx+

k3

3

)
dk (36)

Recall that the Airy function Ai(x) is a solution of the following second order linear
differential equation:

y′′ − xy = 0. (37)

For x < 0 lets rewrite Eq. (36) as follows:

Ai(x) =
1
π

Re

∞∫
0

e
i
(
−k|x|+ k3

3

)
dk =

1
π

Re

∞∫
0

eiφ(k) dk, (38)

where we introduced the notation

φ(k) = −k|x|+ k
3

3
. (39)

The position of the stationary point of the phase factor is determined from the relation

dφ
dk

= −|x|+ k2 = 0, (40)

i.e.
k0 =

√
|x|. (41)

We have a case a moving stationary point. Let’s introduce a new integration variable, u:

u = |x|−
1
2k, k = |x|

1
2u, dk = |x|

1
2 du, k|x| = |x|

3
2u, k3 = |x|

3
2u3. (42)

φ(u) = |x|
3
2

(
−u +

u3

3

)
. (43)

The position of the stationary point is now a constant:

dφ
du

= |x|
3
2
(
−1 +u2

)
= 0 → u0 = 1. (44)

The Taylor expansion of φ(u) in the vicinity of u0 is:

φ(u) = −2
3
|x|

3
2 + |x|

3
2 (u − 1)2. (45)
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Ai(x) =
1
π

Re

e−i 2
3 |x|

3
2 |x|

1
2

∞∫
0

ei|x|
3
2 (u−1)2

du

 . (46)

∞∫
0

ei|x|
3
2 (u−1)2

du ≈
∞∫
−∞

ei|x|
3
2 v2

dv =
√
π |x|−

3
4 ei

π
4 . (47)

Therefore,

Ai(x) =
1
π

Re
[√
π |x|−

1
4 e−i

2
3 |x|

3
2 ei

π
4

]
=

1
√
π
|x|−

1
4 cos

(2
3
|x|

3
2 − π

4

)
. (48)

Figure 5: Asymptotics Eq. (48)
(solid line) compared to numeri-
cally evaluated Eq. (36) (dashed
line) for −15 ≤ x ≤ 0.
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2 Integration by parts

If ψ(t) in the integral Eq. (2) has no stationary point, ψ′(t) = 0, in the integration range
[a,b], the method of stationary phase is not applicable. In this case a simple integration by
parts gives the leading asymptotic behavior.

I(x) =
∫ b

a
f (t)eixψ(t) dt =

1
ix

∫ b

a

f (t)
ψ′(t)

d
(
eixψ(t)

)
=

1
ix

f (t)
ψ′(t)

eixψ(t)
∣∣∣∣∣b
a
− 1
ix

∫ b

a

d
dt

(
f (t)
ψ′(t)

)
eixψ(t) dt. (49)

The integral on the right vanishes more rapidly than 1/x (Riemann–Lebesgue lemma).
Therefore,

I(x) ∼ 1
ix

f (t)
ψ′(t)

eixψ(t)
∣∣∣∣∣b
a

(50)
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as x→∞.

Example 1.

I(x) =
∫ 1

0

cos(xt)
1 + t

dt = Re
∫ 1

0

eixt

1 + t
dt. (51)

Integrating the last integral by parts, we obtain∫ 1

0

eixt

1 + t
dt =

1
ix

∫ 1

0

1
1 + t

d
(
eixt

)
=

1
ix

(
eix

2
− 1

)
+

1
ix

∫ 1

0

eixt

(1 + t)2 dt. (52)

The last term on the right is ∼ x−2 (see below), therefore the leading term in the approxi-
mation of Eq. (51) when x→∞ is

I(x) ≈ Re
{

1
ix

(
eix

2
− 1

)}
=

sin(x)
2x

. (53)

We can continue the integration by parts of the integral in the right hand side of Eq. (52):∫ 1

0

eixt

(1 + t)2 dt =
1
ix

∫ 1

0

1
(1 + t)2 d

(
eixt

)
=

1
ix

(
eix

4
− 1

)
+

2
ix

∫ 1

0

eixt

(1 + t)3 dt. (54)

Thus, ∫ 1

0

eixt

1 + t
dt =

1
ix

(
eix

2
− 1

)
− 1
x2

(
eix

4
− 1

)
− 2
x2

∫ 1

0

eixt

(1 + t)3 dt. (55)

The last term in the right hand side of Eq. (55) is of order x−3 and can be neglected,
therefore

I(x) ≈ Re
{

1
ix

(
eix

2
− 1

)
− 1
x2

(
eix

4
− 1

)}
=

sin(x)
2x

− 1
x2

(
cos(x)

4
− 1

)
(56)

Integration by parts can be a powerful tool even if a stationary point of the integrand is in
the integration range but the contribution tho the integral from the integral end points is
not small.

Example 2.

I(x) =

1∫
0

cos(xt2)dt. (57)
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Figure 6: Asymptotics Eq. (53)
(dashed line) and Eq. (56) (solid
line) compared to numerically
evaluated Eq. (51) (dotted line)
for 8 ≤ x ≤ 20.
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The main term in the asymptotics as x→∞ is due to the stationary point at t = 0.

I(x) ≈ Re

∞∫
0

eixt
2

dt =
1
2

√
π
2x
. (58)

The approximation Eq. (58) is compared to the numerically evaluated integral Eq. (57)
in Fig. 7. Although the numerical values of the approximation are close to the exact
calculations, the important qualitative feature – small oscillations – is missing.

To do better, let’s rewrite Eq. (57) as following:

I(x) = Re


∞∫

0

eixt
2

dt −
∞∫

1

eixt
2

dt

 . (59)

The first integral in Eq. (59) is exactly the main term of the stationary phase approximation
Eq. (58). After integrating by parts in the second integral in Eq. (58), we obtain:

Re

∞∫
1

eixt
2

dt = Re

∞∫
1

d
(
eixt

2)
2ixt

≈ Re
eixt

2

2ixt

∣∣∣∣∣∣
t=∞

t=1

= −sinx
2x

. (60)

Therefore,

I(x) ≈ 1
2

√
π
2x

+
sinx
2x

. (61)

The approximation Eq. (61) is compared to the numerically evaluated integral Eq. (57) in
Fig. 7.
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Figure 7: Asymptotics Eq. (58)
(solid line) and Eq. (61) (dashed
line) compared to the numeri-
cally evaluated integral Eq. (57)
(dotted line) for 10 ≤ x ≤ 100.
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