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1 Introduction

Perturbation theory is a collection of methods for obtaining approximate solutions to
problems involving a small parameter. These methods are very powerful, thus sometimes
it is actually advisable to introduce a parameter ε temporarily into a difficult problem
having no small parameter, treat it as small, and then finally to set ε = 1 to recover the
original problem. The approach of perturbation theory is to decompose a tough problem
into a number of relatively easy ones. The perturbation theory is most useful when the
first few steps reveal the important features of the solution and the remaining ones give
small corrections.

We classify perturbation solutions into two types. A basic feature of regular perturbation
problems is that the exact solution for small but nonzero ε smoothly approaches the
unperturbed solution as ε→ 0.

We define a singular perturbation problem as one whose solution for ε = 0 is fundamentally
different in character from the “neighboring” solutions obtained in the limit ε→ 0.
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2 Regular perturbation theory

2.1 An example of perturbative analysis: roots of a polynomial

We consider first an elementary example to introduce the ideas of regular perturbation
theory. Let us find approximations to the roots of the following equation.

x5 − 16x+ 1 = 0. (1)

For the reference, Eq. (1) has three real roots and two complex conjugate ones. The
numerical values of the roots1 are x1 = −2.01533, x2 = 1.98406, x3 = 0.0625001, and
x4,5 = −0.0156155± 2.0003i.

As it stands, this problem is not a perturbation problem because there is no small parameter
in Eq. (1). In general it may not be easy to convert a particular problem into a tractable
perturbation problem, but in the present case the trick is to replace the constant term in
Eq. (1) with a parameter:

x5 − 16x+ ε = 0. (2)

When ε = 1, the original Eq. (1) is reproduced.

We consider the values of roots to be functions of ε. We further assume a perturbation
series in powers of ε:

x(ε) =
∞∑
n=0

anε
n. (3)

To obtain the first term in this series, we set ε = 0 in Eq. (2) and factor it as following

x5 − 16x = 0 → x(x2 − 4)(x2 + 4) = 0 → x(x − 2)(x+ 2)(x − 2i)(x+ 2i) = 0. (4)

Thus, in the zeroth-order perturbation theory the equation’s roots are:

xm = ±2, 0, ±2i, m = 1, . . . ,5. (5)

A second-order perturbation approximation to the first of these roots consists of writing

x1 = −2 + a1ε+ a2ε
2, (6)

substituting this expression into Eq. (2), and neglecting powers of ε beyond ε2. 2 The
result is

(1 + 64a1)ε+ (−80a1 + 64a2)ε2 = 0. (7)
1The roots can be determined using a computer algebra system, e.g. with the following Mathematica

command: NSolve[xˆ5-16x+1==0,x].
2Computer algebra systems are perfectly suited for the tasks like this. E.g. the command ord=3; li

= CoefficientList[Series[xˆ5-16*x+ε/.x -> Sum[a[n]*εˆn, {n,0,ord}], {ε,0,ord}], ε]; sol =

Solve[li==0]; r = Sum[a[n]εˆn, {n,0,ord}]/.sol; r/.ε->1 does the job.
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Since ε is a variable, we conclude that the coefficient of each power of ε in Eq. (7) are
separately equal to zero.

This gives a sequence of equations for the expansion coefficients ai :

1 + 64a1 = 0, −80a2
1 + 64a2 = 0, (8)

with the solutions
a1 = − 1

64
, a2 =

5
4
a2

1 =
5

16384
. (9)

Therefore, the perturbation expansion for the root x1 is

x1 = −2− 1
64

ε+
5

16384
ε2. (10)

If we now set ε = 1, we obtain x1 = −2.01532 accurate to better than 10−5. The same
procedure gives

x2 = 2− 1
64

ε − 5
16384

ε2 = 1.98407 (11)

x3 =
1

16
ε = 0.06250 (12)

x4 = −2i − 1
64

ε − 5i
16384

ε2 = −.015625− 2.00031i (13)

x5 = 2i − 1
64

ε+
5i

16384
ε2 = −.015625 + 2.00031i (14)

This example illustrates the three steps of perturbative analysis:

1. Convert the original problem into a perturbation problem by introducing the small
parameter ε.

2. Assume an expression for the answer in the form of a perturbation series and compute
the coefficients of that series.

3. Recover the answer to the original problem by summing the perturbation series for
the appropriate value of ε.

Step 1 is sometimes ambiguous because there may be many ways to introduce a small
parameter in the equation. It is preferable to introduce ε in such a way that the zeroth-
order solution (the leading term in the perturbation series) is obtainable as a closed-form
analytic expression. Step 1 may be omitted when the original problem already has a small
parameter if a perturbation series can be developed in powers of that parameter.
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2.2 Perturbative solution of an initial value problem

Let’s apply the perturbation theory to an initial value problem for an ordinary differential
equation.

Consider the following problem:

y′′ = −e−xy, y(0) = 1, y′(0) = 1. (15)

As a first step, we convert Eq. (15) into a perturbation problem by introducing ε in the
right side of the equation.

y′′ = −ϵe−xy. (16)

We assume a perturbation expansion for y(x) in the form

y(x) =
∞∑
n=0

εnyn(x), (17)

where
y0(0) = 1, y′0(0) = 1, yn(0) = 0, y′n(0) = 0 for n ≥ 1. (18)

The zeroth-order problem
y′′ = 0 (19)

is obtained by setting in Eq. (16) ϵ = 0. The solution that satisfies the initial conditions
Eq. (18) is follows:

y0(x) = x+ 1. (20)

The first order problem is obtained by substituting Eq. (17) into Eq. (16) and equating the
coefficient of ϵ in the left and right hand sides of the equation:

y′′1 = −e−xy0(x) = −e−x(x+ 1). (21)

Integrating Eq. (21) twice, we obtain:

y′1(x) = −
x∫

0

(y + 1)e−y dy = xe−x + 2e−x − 2, (22)

y1(x) =

x∫
0

(y e−y + 2e−y − 2) dy = −xe−x − 3e−x + 3− 2x. (23)

The integration limits in Eqs. (22), (22) are chosen to satisfy the initial conditions Eq. (18).

The graph of the first order solution

y(x) = y0(x) + y1(x) (24)

is presented in Fig. 2 together with the numerical solution of Eq. (15).
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Figure 1: The graphs of the
numerical solution of the ini-
tial value problem Eq. (15) (dot-
ted line), perturbation solu-
tion Eq. (20) (dashed line), and
perturbation solution Eq. (24)
(solid line).
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2.3 Perturbative solution of a boundary-value problem

Let’s apply the perturbation theory to a boundary value problem for an ordinary differen-
tial equation.

Consider the following nonlinear two-point boundary-value problem:

y′′ + y =
cos(x)

2 + 2y2 , y(0) = 2, y
(π

2

)
= 1. (25)

As a first step, we convert Eq. (25) into a perturbation problem by introducing ε in the
right side of the equation. Then we obtain a first-order approximation to the answer.
Finally, we return to the original equation by assigning ε = 1.

y′′ + y = ε
cos(x)

2 + 2y2 . (26)

We assume a perturbation expansion for y(x) in the form

y(x) =
∞∑
n=0

εnyn(x), (27)

where y0(0) = 2, y0

(
π
2

)
= 1, yn(0) = yn

(
π
2

)
= 0 for n ≥ 1.

The zeroth-order problem y′′ +y = 0 is obtained by setting ε = 0. The solution that satisfies
the boundary conditions is

y0(x) = 2cos(x) + sin(x). (28)
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The first order problem is obtained by substituting Eq. (28) into Eq. (27) and equating the
coefficient of ε in the left and right hand sides of the equation:

y′′1 + y1 =
cos(x)

2 + 2y2
0

=
cos(x)

7 + 3cos(2x) + 4sin(2x)
. (29)

Eq. (29) is linear inhomogeneous differential equation. It can be solved by variation of
parameters. The solution of Eq. (29) is as following:

y1(x) = a(x)cos(x) + b(x)sin(x), (30)

where a(0) = 0 and b
(
π
2

)
= 0,

a(x) = −
x∫

0

cos(y) sin(y)
7 + 3cos(2y) + 4sin(2y)

dy

=
1

300

−24x − 14
√

6 arctan


√

2
3

+ 14
√

6 arctan


√

2
3

(1 + tan(x))


− 9ln(10) + 9 ln

(
7 + 3 cos(2x) + 4 sin(2x)

) ,
(31)

b(x) =

x∫
π
2

cos2(y)
7 + 3cos(2y) + 4sin(2y)

dy

=
1

300

18x − 9π −
√

6π+ 2
√

6 arctan


√

2
3

(1 + tan(x))


− 24ln(2) + 12ln

(
7 + 3 cos(2x) + 4 sin(2x)

) .
(32)

The graph of the first order solution

y(x) = y0(x) + y1(x) (33)

is presented in Fig. 2 together with the numerical solution of Eq. (25).
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Figure 2: The graphs of the nu-
merical solution of the bound-
ary value problem Eq. (25)
(solid line), perturbation solu-
tion Eq. (33) (dashed line), and
perturbation solution Eq. (28)
(dotted line). Perturbation ap-
proximation Eq. (33) is practi-
cally indistinguishable on the
graph from the numerical solu-
tion.
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3 Singular perturbation theory

3.1 The method of dominant balance

Let’s introduce an approach for attacking “unsolvable” problems that is called the method
of dominant balance.

Suppose you are given an equation in the form

A+B+C = 0, (34)

where A, B, C are different terms in the equation. These terms could represent elements
of a polynomial equation (e.g. x5) or could represent terms in an ordinary differential
equation or terms in a nonlinear partial differential equation. It is almost invariably the
case that two of the terms are larger than the third one. For example, let’s assume that
A, C are larger than B. In this case we can then “approximate” the original equation by
neglecting B entirely and consider that A is balancing C, that is solving the equation

A+C = 0. (35)

We can then check that this reduced equation is “consistent”, by taking the solution to
the reduced equation, plugging it back into the original equation, and verifying that the
neglected terms are indeed smaller than the terms we have kept. If they are, our solution is
“consistent”. If not the solution is “inconsistent” and we must consider another dominant
balance.
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3.2 Roots of a polynomial, II

To illustrate the work of the method of dominant balance, let’s return to Eq. (1) and convert
it to a perturbation problem as following:

εx5 − 16x+ 1 = 0. (36)

We begin by setting ε = 0 to obtain the unperturbed problem −16x+1 = 0, with the solution
x = 1

16 . Note that the unperturbed equation has only one root while the original equation
has five roots. Part of the exact solution ceases to exist when ε = 0. This abrupt change in
the character of the solution, namely the disappearance of four roots when ε = 0, implies
that Eq. (36) is a singular perturbation problem.

The explanation for this behavior is that the four missing roots tend to∞ as ε→ 0. Thus,
for those roots it is no longer valid to neglect εx5 compared with −16x + 1 in the limit
ε→ 0.

To track down the four missing roots we first estimate their orders of magnitude as ε→ 0.
We do this by considering all possible dominant balances between pairs of terms in Eq. (36).
There are three terms in so there are three pairs to consider:

1. Suppose 16x ∼ 1 is the dominant balance. This is a consistent assumption because
the other term in the equation, ∼ ε, is negligible compared with x and 1, and we
recover the root of the unperturbed equation 16x − 1 = 0. We may assume a regular
perturbation expansion Eq. (3) for this root, as we did in Sec. 2.1, and obtain:

x =
1

16
+

1
16777216

ε+
5

17592186044416
ε2 +

35
18446744073709551616

ε3 + . . . (37)

2. Suppose εx5 ∼ −1 is the dominant balance. Then x ∼ ε−
1
5 .

For this balance to be consistent the neglected term, x, must be smaller than the
terms we have kept. But it is not! In the limit ε→ 0, the size of the neglected term,
∼ ε−

1
5 →∞, whereas the two terms we have kept are of order unity. Therefore this is

not a consistent balance.

3. Suppose εx5 ∼ 16x is the dominant balance. Then x ∼ ε−
1
4 .

The size of the neglected term, 1, is much smaller than the size of the terms that we
have kept ∼ ε−

1
4 as ε→ 0, so this balance is self consistent.

Thus, the magnitudes of the four missing roots are ∼ ε−
1
4 as ε→ 0. This result suggests a

scale transformation for the variable x:

x = ε−
1
4 y. (38)
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The substituting of Eq. (38) into Eq. (36) gives

y5 − 16y + ε
1
4 = 0. (39)

This is now a regular perturbation problem for y in the parameter ε
1
4 because the unper-

turbed problem y5 − 16y = 0 has five roots. No roots disappear in the limit ε→ 0.

The perturbative corrections to these roots may be found by assuming a regular perturba-
tion expansion in powers of ε

1
4 .

y(ε) =
∞∑
n=0

anε
n
4 . (40)

It would not be possible to match powers in an expansion having only integral powers
of ε.

The results are:

y1 = −2− 1
64

ε
1
4 +

5
16384

ε
1
2 − 5

524288
ε

3
4 + . . . , (41)

y2 = 2− 1
64

ε
1
4 − 5

16384
ε

1
2 − 5

524288
ε

3
4 − . . . , (42)

y3 =
1

16
ε

1
4 +

1
16777216

ε
5
4 +

5
17592186044416

ε
9
4 + . . . , (43)

y4 = −2i − 1
64

ε
1
4 − 5i

16384
ε

1
2 +

5
524288

ε
3
4 + . . . , (44)

y5 = 2i − 1
64

ε
1
4 +

5i
16384

ε
1
2 +

5
524288

ε
3
4 − . . . . (45)

Note that only the second, fifths, ninths, . . . coefficient in Eq. (43) for y3, is non-vanishing.
Thus we have also reproduced the regular perturbation series of Eq. (37).

3.3 Boundary layers

We now discuss the perturbative method that is called boundary-layer theory. It is used
for solving a differential equation whose highest derivative is multiplied by the perturbing
parameter ε. A boundary layer is a narrow region where the solution of a differential
equation changes rapidly. By definition, the thickness of a boundary layer must approach
0 as ε→ 0.

Example 1. Exactly soluble boundary-layer problem Consider the following boundary-
value problem whose solution, as we see shortly, exhibits boundary-layer structure.

εy′′ + (1 + ε)y′ + y = 0, y(0) = 0, y(1) = 1. (46)
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Eq. (46) is a differential equation with constant coefficients. Looking for the solution in
the form

y(x) ∼ erx, (47)

we obtain the following quadratic equation for r:

r2 +
(
1 +

1
ε

)
r +

1
ε

= 0. (48)

r1,2 = −1
2

(
1 +

1
ε

)
±

√
1
4

(
1 +

1
ε

)2
− 1
ε

= −1
2

(
1 +

1
ε

)
± 1

2

(
1− 1

ε

)
. (49)

r1 = −1, r2 = −1
ε
. (50)

The general solution of Eq. (46) is

y(x) = C1e
−x +C2e

− x
ε , (51)

where C1 and C2 are integration constants.

The boundary condition at x = 0, y(0) = 0, gives

C1 = −C2. (52)

The boundary condition at x = 1, y(1) = 0, gives

C1 =
(
e−1 − e−

1
ε

)−1
. (53)

Thus, the exact solution of the boundary value problem Eq. (46) is:

y(x) =
e−x − e−

x
ε

e−1 − e−
1
ε

. (54)

The graph of the solution Eq. (54) is presented in Fig. 3. For small ε the solution Eq. (54) is
slowly varying for ε≪ x ≤ 1. However, on the small interval 0 < x ≤O(ε) it undergoes a
rapid change.

The small interval of rapid change is called a boundary layer. The region of slow variation
of y(x) is called the outer region. The boundary-layer region is also called the inner region.

Boundary-layer theory is a collection of methods for solving differential equations whose
solutions exhibit boundary-layer structure.

There are two standard approximations that one makes in boundary-layer theory:
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Figure 3: The graphs of the so-
lution of the boundary value
problem Eq. (46) for ε = 0.025
(solid line). The inner and
outer solutions, Eq. (66) and
Eq. (57) respectively, are shown
in dashed and dotted lines.
(The uniform approximation
to the exact solution, yu(x),
Eq. (68), is also plotted but is
indistinguishable from the ex-
act solution.)
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1. In the outer region (away from a boundary layer) y(x) is slowly varying, so it is valid
to neglect any derivatives of y(x) which are multiplied by ε.

2. Inside a boundary layer the derivatives of y(x) are large, but the boundary layer
is so narrow that we may approximate the coefficient functions of the differential
equation by constants.

In every region the solution of the approximate equation will contain one or more unknown
constants of integration. These constants are then determined from the boundary or initial
conditions using the technique of asymptotic matching.

Example 2. Using boundary-layer theory for the same exactly soluble problem Let’s
now use the boundary-layer theory to solve the problem Eq. (46). In the outer region
(ε = 0) we have the following first order differential equation:

y′ + y = 0 (55)

with the general solution
yout(x) = Ce−x, (56)

where C is the integration constant. Since no choice of C can satisfy the boundary condition
y(0) = 0, we conclude that the outer region is adjacent to x = 1. We determine the
integration constant from the boundary condition y(1) = 1:

y(1) = Ce−1 = 1 → C = e, yout(x) = e1−x. (57)

In the inner region, which we now know is adjacent to x = 0, y′′, y′ ≫ y, thus the differential
equation in the inner region is as following:

εy′′ + y′ = 0. (58)
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Eq. (58) can be solved by introducing a temporary unknown function v(x) = y′(x). We have
the following differential equation for v

v′ +
1
ε
v = 0, (59)

with the solution
v(x) = y′(x) = C0e

− x
ε . (60)

Integrating once again, we obtain the inner solution as following

yin(x) = C1e
− x
ε +C2, (61)

where C1 and C2 are two integration constants. We determine those from the boundary
condition at x = 0 and from matching the inner and the outer solutions.

The boundary condition yin(0) = 0 gives

C1 +C2 = 0 → C1 = −C2, (62)

that is
yin(x) = C1e

− x
ε −C1, (63)

To determine the remaining integration constant, C1 we require that the limit of the outer
solution, yout(x), as x→ 0 be the same as the limit of the inner solution, yin(x), as x→∞:

ylim = lim
x→0

yout(x) = e, ylim = lim
x→∞

yin(x) = −C1, (64)

thus
C1 = −e (65)

and
yin(x) = −e1− x

ε + e. (66)

Finally we need to construct the so called uniform approximation for the solution for
0 ≤ x ≤ 1:

yu = yin(x) + yout(x)− ylim, (67)

where ylim(x) is the common limit of yin(x) and yout(x) given by Eq. (64).

yu = e1−x − e1− x
ε = e

(
e−x − e−

x
ε

)
(68)

The uniform approximation Eq. (68) is compared to the exact solution and to the inner
and the outer solutions in Fig. 3.
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Example 3. Using dominant balance approach for the exactly soluble problem Let’s
re-scale x,

x = εα ξ,
d

dx
= ε−α

d
dξ

,
d2

dx2 = ε−2α d2

dξ2 (69)

where α is a parameter that we determine later.

ε1−2α d2y

dξ2 + ε−α
dy
dξ

+ ε1−α dy
dξ

+ y = 0. (70)

There are four terms in Eq. (70), therefore there are six pairs to consider for dominant
balance.

• Suppose that the first and the second terms in Eq. (70) are the dominant balance:

ε1−2α d2y

dξ2 ∼ ε−α
dy
dξ

. (71)

This is possible if 1− 2α = −α, i.e. α = 1. The balance is consistent since the other
two terms in the equation, which now takes the form

1
ε

d2y

dξ2 +
1
ε

dy
dξ

+
dy
dξ

+ y = 0, (72)

are much smaller that the terms we keep. The equation in the dominant balance
approximation is

d2y

dξ2 +
dy
dξ

= 0, (73)

with the solution
y(ξ) = C1e

−ξ +C2. (74)

As a function of the “original” x,

y(x) = C1e
− x
ε +C2, (75)

which is exactly the solution Eq. (61).

• Suppose that the second and the fourth terms in Eq. (70) are the dominant balance:

ε−α
dy
dξ
∼ y. (76)
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This is possible if α = 0. The balance is consistent since the other two terms in the
equation, which now takes the form

ε
d2y

dξ2 +
dy
dξ

+ ε
dy
dξ

+ y = 0, (77)

are much smaller that the terms we keep. The equation in the dominant balance
approximation is

dy
dξ

+ y = 0, (78)

with the solution
y(x) = Ce−x, (79)

which is exactly the solution Eq. (56).

• All other pairs of terms in Eq. (70) produce inconsistent balances.

Repeating the steps of matching solutions Eq. (79) and Eq. (75) with each other and with
the boundary conditions, we obtain the same uniform solution Eq. (68).

Example 4. Using boundary-layer theory for a nonlinear equation Consider now the
following nonlinear boundary value problem:

εy′′ + y′ + e−y = 0, y(0) = 2, y(1) = 0. (80)

In the outer region (ε = 0) we have the following first order differential equation:

y′ + e−y = 0 (81)

with the general solution
yout(x) = ln(C − x), (82)

where C is an integration constant. For now let’s suppose that the outer region is adjacent
to x = 1. We determine the integration constant from the boundary condition y(1) = 0:

y(1) = ln(C − 1) = 0 → C = 2, yout(x) = ln(2− x). (83)

In the inner region, which we now know is adjacent to x = 0, y′′, y′ ≫ y, therefore the
differential equation in the inner region is as following:

εy′′ + y′ = 0. (84)

Eq. (84) is the same as Eq. (58) that we already solved. Thus the inner solution as follows:

yin(x) = C1e
− x
ε +C2, (85)
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where C1 and C2 are two integration constants. We determine those from the boundary
condition at x = 0 and from matching the inner and the outer solutions.

The boundary condition yin(0) = 2 gives

C1 +C2 = 2 → C2 = 2−C1, (86)

that is
yin(x) = C1e

− x
ε −C1 + 2. (87)

To determine the remaining integration constant, C1 we require that the limit of the outer
solution, yout(x), as x→ 0 be the same as the limit of the inner solution, yin(x), as x→∞:

ylim = lim
x→0

yout(x) = ln(2), ylim = lim
x→∞

yin(x) = 2−C1, (88)

thus
C1 = 2− ln(2) (89)

and
yin(x) = (2− ln(2))e−

x
ε + ln(2). (90)

Finally we need to construct the uniform approximation for the solution for 0 ≤ x ≤ 1:

yu = yin(x) + yout(x)− ylim, (91)

where ylim(x) is the common limit of yin(x) and yout(x) given by Eq. (88).

yu = ln(2− x)− (2− ln(2)) e−
x
ε . (92)

The uniform approximation Eq. (92) is compared to the exact solution and to the inner
and the outer solutions in Fig. 4.

4 Van der Pol oscillator for large nonlinearity

The second order non-linear autonomous differential equation

d2x

dt2 + ε
(
x2 − 1

) dx
dt

+ x = 0, ε > 0 (93)

is called van der Pol equation. The parameter ε is positive and indicates the nonlinearity
of the system. The equation models a non-conservative system in which energy is added
to and subtracted from the system, resulting in a periodic motion called a limit cycle. In
this section we obtain an approximation for the limit cycle for large ε, ε≫ 1.
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Figure 4: The graphs of the nu-
merical solution of the bound-
ary value problem Eq. (80)
for ε = 0.02 (dotted line).
The inner and outer solutions,
Eq. (90) and Eq. (83) respec-
tively, are shown as dot-dashed
and dashed lines. The uniform
approximation to the exact so-
lution, yu(x), Eq. (92), is plotted
as solid line.
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First, we define a small parameter, ν ≡ ε−1, ν≪ 1. In terms of ν Eq. (93) takes the form:

ν
d2x

dt2 +
(
x2 − 1

) dx
dt

+ ν x = 0. (94)

Next we re-scale t,

t = να τ,
d
dt

= ν−α
d

dτ
,

d2

dt2 = ν−2α d2

dτ2 (95)

where α is a parameter that we determine later.

ν1−2α d2x

dτ2 + ν−α
(
x2 − 1

) dx
dτ

+ ν x = 0. (96)

Finally, we select α so that two of the three terms in Eq. (96) are of the same order in ν,
and are larger than the remaining term. There are three pairs to consider:

1. Suppose that the first and the third terms in Eq. (96) balance:

ν1−2α d2x

dτ2 ∼ −ν x. (97)

i.e. that 1− 2α = 1, or α = 0.

For this balance to be consistent the neglected term,
(
x2 − 1

)
dx
dτ , must be smaller than

the terms we have kept. But it is not! In the limit ν → 0, the size of the neglected
term is of order ν0 ∼ 1, whereas the two terms we have kept are of order ν, ν ≪ 1.
Therefore this is not a consistent balance.
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Figure 5: Numerical solution of van der Pol oscillator for ε = 10.
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2. Suppose that the second and the third terms in Eq. (96) balance:

ν−α
(
x2 − 1

) dx
dτ
∼ −ν x. (98)

i.e. that α = −1.

The terms that we keep are both proportional to ν. The neglected term, ν1−2α d2x
dτ2 is

proportional to ν3, thus it is indeed much smaller that that the kept terms. Therefore
this is a consistent balance.

Eq. (96) takes the form:

ν2 d2x

dτ2
1

+
(
x2 − 1

) dx
dτ1

+ x = 0, (99)

where τ1 ≡ ν t = t
ε is called the slow time.

Neglecting the term that is proportional to ν2 we get the following equation:(
x2 − 1

) dx
dτ1

+ x = 0, (100)

or
dx
dτ1

=
x

1− x2 . (101)

Equation (101) is a first order ordinary differential equation that can be integrated
separating variables:(1

x
− x

)
dx = dτ1 −→ ln |x| − x2

2
=

t
ε

+C1, (102)

where C1 is an integration constant. This constant is irrelevant when we are interested
how long it took to move from x = xi to x = xf :

∆t = t(xf )− t(xi), (103)

where

t(x) def== ε

(
ln |x| − x2

2

)
. (104)

3. Suppose that the first and the second terms in Eq. (96) balance:

ν1−2α d2x

dτ2 ∼ −ν
−α

(
x2 − 1

) dx
dτ

(105)
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i.e. that 1− 2α = −α, or α = 1.

The terms that we keep are both proportional to ν−1. The neglected term, νx is
proportional to ν, thus it is indeed much smaller that that the kept terms. Therefore
this is a consistent balance.

Eq. (96) takes the form
d2x

dτ2
2

+
(
x2 − 1

) dx
dτ2

+ ν2x = 0. (106)

Here τ2 ≡ t
α = tε. Variable τ2 is called the fast time.

Neglecting the term ∼ ν2 we get the equation:

d2x

dτ2
2

+
(
x2 − 1

) dx
dτ2

= 0, (107)

or
d

dτ2

(
dx
dτ2

+
x3

3
− x

)
= 0. (108)

dx
dτ2

+
x3

3
− x = C2, (109)

where C2 is an integration constant.

We now need to match the solutions Eq. (102) and (109) to find the integration constants
C1 and C2. The motion proceeds according to Eq. (102) until it reaches x = ±1 where the
speed dx

dt is infinite. At this point the system undergoes a jump the which is described by
the limit Eq. (109). We chose C2 so that x = 1 is an equilibrium point of Eq. (109):

dx
dτ2

= 0 = C2 −
(
x3

3
− x

)
x=1

, (110)

so that
C2 = −2

3
. (111)

Using the just determined value of C2 we rewrite Eq. (109) as following3:

dx
dτ2

= −2
3
− x3

3
+ x = −1

3
(x − 1)2 (x+ 2). (112)

3The factorization of the right hand side of Eq. (112) can be done using a computer algebra system, e.g.
Factor[-2/3 - xˆ3/3 + x]
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Therefore, the second equilibrium point, which corresponds to the landing point of the
“jump” is at x = −2. That is, the jump goes from xi = 1 to xf = −2. Repeating the reasoning
we find that the jump that starts at xi = −1 ends at xf = 2.

The time for the system to jump is negligible compared to the time spent in the “slow”
motion in accordance with Eq. (103), (104). Thus, the period of van der Pol oscillator is:

T (ε) = 2
(
t(1)− t(2)

)
=

(
3− 2ln2

)
ε. (113)
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