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The Liouville theorem states that if a function f(z) is analytic for all finite z and is bounded
at infinity then f(z) is a constant.

Consider a circular contour, Cg, of radius R:
z=Re'?, 0<¢<2m, dz=iRe'?dé. (1)

We take two arbitrary points, z; and z,, inside the contour. The analyticity of f(z) means
that

27
o flaydz R [ f(z)d¢$
fen=sg ¢ L= &
z=Rel¢ 0
and ,
1 f(zdz R [ f(z)d¢
fl)=5m ¢ 225 —gf—z_zz . 3)
z=Re'® 0

Here we keep using the notation z = z(¢) = Re’? to simplify the expressions.

The difference between the values of the function f(z) at z; and z, is as follows:
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We can estimate the absolute value of this difference by taking the limit R — co. Let M be
the finite bound of f(z):
If(z)| <M, as |z] = oo. (5)
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Then,

e -fz)

Here we used the relations

and

In the limit R — oo,

lim | f(z1)-f(,)|

R—o0

Thus

for all z; and z,, i.e.
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