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Laplace’s method is a general technique for obtaining the asymptotic behavior of integrals in
which the large parameter λ, λ→∞, appears in the exponent:

I(λ) =

b∫
a

f (t)eλφ(t)
dt =

b∫
a

f (t)
(
eφ(t)

)λ
dt. (1)

Here f (t) and φ(t) are real continuous functions, independent of λ. Integrals of this form
are called Laplace integrals. Laplace’s method relies on the following observation: if the real
continuous function φ(t) has its maximum on the interval a ≤ t ≤ b at t = t0 and if f (t0) , 0,
then it is only the immediate neighborhood of t = t0 that contributes to the asymptotic
expansion of I(λ) for large λ.

Indeed, we can always write eφ(t) as eφ(t0) eψ(t), where eφ(t0) is just a constant multiplication
factor that can be factored out of the integral. Here we defined ψ(t) ≡ φ(t) − φ(t0). The
maximal value of ψ(t) is zero, thus the maximal value of eψ(t) is one. A typical behavior of
eψ(t) is sketched in Fig. 1 in solid line. As we rise eψ(t) into power λ, its maximum stays “fixed”
at (x0,1) but its wings are “moving down” toward the x axis, thus making the graph narrower
(see Fig. 1). Therefore we can replace f (t) and φ(t) with their approximations that need to be
good ones only in the vicinity of t0.

The logic of the Laplace method works without changes for a more general form of the
integrand:

b∫
a

f (t)
(
κ(t)

)λ
dt, (2)

where λ is a large parameter as before, λ → ∞, κ(t) is real continuous function that is
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Figure 1: Changes of the inte-
grand in Laplace integral as the
parameter λ is increasing.
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independent of λ, doesn’t change the sign on the interval of integration a ≤ t ≤ b (say it is
positive), and has a single maximum on that interval.

Let’s consider simple examples of Laplace’s method.

Example 1. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

π
2∫

0

eλcos(x)

x2 + 4
dx. (3)

Since only small |x|, such that |x| ∼ 1√
λ
≪ 1, are important in the integral Eq. (11), we can

approximate the integrand as following:

cos(x) ≈ 1− x
2

2
, −→ eλcos(x) ≈ eλe−

λ
2 x

2
, (4)

1
x2 + 4

≈ 1
4
. (5)

Thus,

I(λ) ∼ 1
4
eλ
∞∫

0

e−
λ
2 x

2
dx =

1
8

√
2π
λ
eλ =

√
π

32λ
eλ . (6)

The agreement between the approximation Eq. (6) and the numerically evaluated integral
Eq. (3) is shown in Fig. 2.
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Figure 2: Asymptotics Eq. (6)
(solid line) compared to the nu-
merically evaluated integral (3)
(dashed line) for 2 ≤ λ ≤ 8. No-
tice the logarithmic scale on y
axis.
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Example 2. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

1∫
0

e−λsin3(x) dx. (7)

The maximum of the function in the exponent, e−sin3 x is at x = 0, so in this example the main
contribution to the integral is coming from the vicinity of the left endpoint of the integration
range, x = 0, where sin3x ∼ x3.

I(λ) ∼
∞∫

0

e−λx
3
dx. (8)

To evaluate the last integral, let’s introduce a new integration variable, u = λx3:

x3 =
u
λ
−→ x =

u
1
3

λ
1
3

−→ dx =
u

1
3−1

3λ
1
3

du. (9)

I(λ) ∼ 1

3λ
1
3

∞∫
0

e−uu
1
3−1 du =

Γ (1
3 )

3λ
1
3

=
Γ (4

3 )

λ
1
3

. (10)

The agreement between the approximation Eq. (10) and the numerically evaluated integral
Eq. (7) is shown in Fig. 3.
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Figure 3: Asymptotics Eq. (10)
(solid line) compared to the nu-
merically evaluated integral (7)
(dashed line) for 40 ≤ λ ≤ 100.
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Example 3. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

4∫
−3

e−λx
2

log
(
1 + x2

)
dx. (11)

Since only small |x|, such that |x| ∼ 1√
λ
≪ 1, are important in the integral Eq. (11) (for |x| ≥ 1√

λ
the integrand is negligibly small due to the exponent’s factor), we can approximate the
function in the integrand as following:

log
(
1 + x2

)
∼ x2. (12)

Thus,

I(λ) ∼
4∫
−3

e−λx
2
x2 dx ∼

∞∫
−∞

e−λx
2
x2 dx = 2

∞∫
0

e−λx
2
x2 dx. (13)

Introducing the new integration variable u,

u = λx2 −→ x2 =
u
λ
−→ x =

1
√
λ
u

1
2 −→ dx =

1

2
√
λ
u−

1
2 du. (14)

I(λ) ∼ λ−
3
2

∞∫
0

e−uu
1
2 du = λ−

3
2 Γ

(3
2

)
= λ−

3
2

1
2
Γ

(1
2

)
=
√
π

2
λ−

3
2 (15)

The agreement between the approximation Eq. (15) and the numerically evaluated integral
Eq. (11) is shown in Fig. 4.
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Figure 4: Asymptotics Eq. (15)
(solid line) compared to the
numerically evaluated integral
Eq. (11) (dashed line) for 10 ≤
λ ≤ 50.
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Example 4. Find the leading term of the asymptotics of the following integral for n≫ 1:

I(n) =

1∫
−1

(cosx)n dx, (16)

Since only small |x|, such that |x| ∼ 1√
λ
≪ 1, are important in the integral, we can approximate

cosx ∼ 1− x
2

2
∼ e−

x2
2 . (17)

Thus,

I(n) =

1∫
−1

(
e−

x2
2

)n
dx ∼

∞∫
−∞

e−
nx2

2 dx =

∞∫
−∞

e−
(√

n
2x

)2

dx = (18)

=

√
2
n

∞∫
−∞

e−
(√

n
2x

)2

d
(√

n
2
x

)
=

√
2
n

∞∫
−∞

e−u
2

du = (19)

=

√
2π
n
. (20)

The agreement between the approximation Eq. (20) and the numerically evaluated integral
Eq. (16) is shown in Fig. 5.
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Figure 5: Asymptotics Eq. (20)
(solid line) compared to the nu-
merically evaluated integral (16)
(dashed line) for 10 ≤ n ≤ 50.
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Example 5. Find the leading term of the asymptotics of gamma function, Γ (x), for x→∞:

Γ (x) =

∞∫
0

e−ttx−1 dt =

∞∫
0

e−t+x log t 1
t

dt (21)

The function in the exponent in Eq. (21),

f (t) = −t + x log t, (22)

has its maximum at t = t0 which depends upon x:

df
dt

= 0, −→ −1 +
x
t

= 0 −→ t0 = x. (23)

To make the maximum independent of x, let’s introduce a new integration variable, s,

s =
t
x
, −→ t = xs, −→ dt = xds,

dt
t

=
ds
s
, (24)

f (t) = −t + x log t = −xs+ x logs+ x logx. (25)

Γ (x) = ex logx

∞∫
0

e−x(s−logs) 1
s

ds. (26)

Let’s apply the Laplace’s method to the integral in Eq. (26):

f (s) = s − logs,
df
ds

= 1− 1
s
. (27)
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df
ds

= 0, −→ s0 = 1. (28)

f (s0) = 1,
d2f

ds2
=

1
s2
, −→

d2f

ds2
(s0) = 1. (29)

f (s) ≈ f (s0) +
1
2

d2f

ds2
(s0)(s − s0)2 = 1 +

1
2

(s − 1)2. (30)

∞∫
0

e−xf (s) 1
s

ds ∼
∞∫

0

e−x(1+ 1
2 (s−1)2) 1

s0
ds ∼ e−x

∞∫
−∞

e−
1
2x(s−1)2

ds = e−x
∞∫
−∞

e−
1
2xs

2
ds. (31)

The last integral is a Gaussian one:

∞∫
−∞

e−
1
2xs

2
ds =

√
2π
x
, (32)

therefore ∞∫
0

e−x(s−logs) 1
s

ds ∼ e−x
√

2π
x
. (33)

Finally, combining Eq. (26) and Eq. (33)

Γ (x) ∼ ex logxe−x
√

2π
x

=

√
2π
x

(x
e

)x
. (34)

The expression Eq. (34) is the leading term of the Stirling approximation for Gamma function.

The agreement between the approximation Eq. (34) and the numerically evaluated integral
Eq. (21) is shown in Fig. 6.
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Figure 6: Asymptotics Eq. (34)
(solid line) compared to the nu-
merically evaluated integral (21)
(dashed line) for 2 ≤ x ≤ 8. No-
tice the logarithmic scale on y
axis.
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