PHYS 2400 HW 5

Name: _____

Date: _____

Collaborators:

Question:	1	2	3	Total
Points:	25	25	25	75
Score:				

Instructor/grader comments:

The method of residues

1. (25 points) Calculate the following integral for real a, |a| < 1, and integer n, $n \ge 0$:

$$I_n(a) = \int_{-\pi}^{\pi} \frac{\cos(n\varphi)}{1 - 2a\cos(\varphi) + a^2} \,\mathrm{d}\varphi.$$

Sketch the integration contour. Indicate the position(s) of the pole(s) of the integrand. To verify your answer, consider the limit $a \rightarrow 0$, $n \neq 0$. (Note that $I_n(0) = 0$ for $n \neq 0$.)

Hint: Consider the integral

$$J_n(a) = \int_{-\pi}^{\pi} \frac{e^{in\varphi}}{1 - 2a\cos(\varphi) + a^2} \,\mathrm{d}\varphi.$$

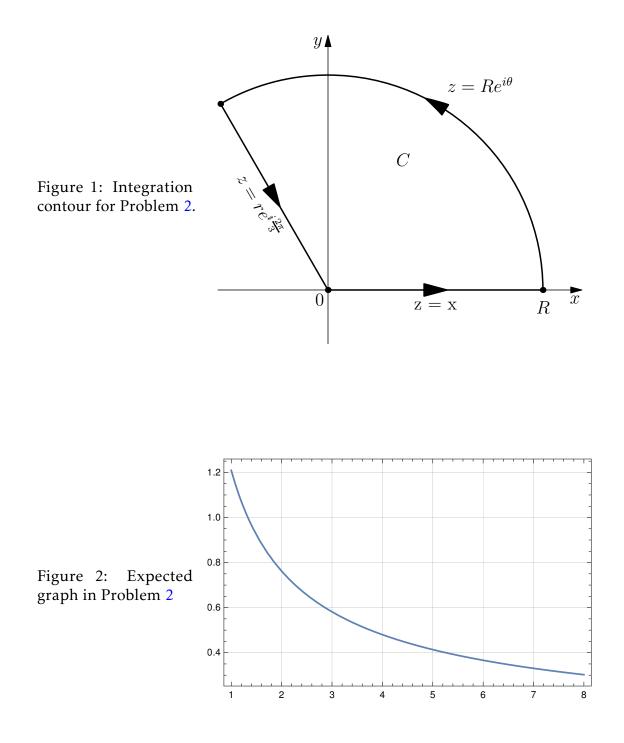
2. (25 points) Calculate the integral for a > 0:

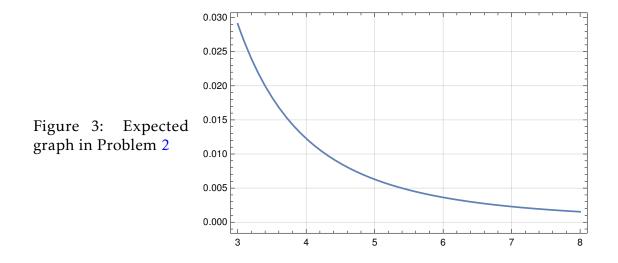
$$I(a) = \int_{0}^{\infty} \frac{\mathrm{d}x}{a + x^3}.$$

Use the integration contour shown in Fig. 1 where $R \rightarrow \infty$. Sketch the position(s) of the pole(s) of the integrand.

To verify your solution, use a computer algebra system to plot a graph of I(a) for $1 \le a \le 8$. The expected graph is shown in Fig. 2.

Attach a printout of your CAS session.


3. (25 points) Calculate the integral for a > 0:


$$I(a) = \int_0^\infty \frac{\mathrm{d}x}{\left(a^2 + x^2\right)^2}.$$

Sketch the integration contour. Indicate the position(s) of the pole(s) of the integrand.

To verify your solution, use a computer algebra system to plot a graph of I(a) for $3 \le a \le 8$. The expected graph is shown in Fig. 3.

Attach a printout of your CAS session.

