COURSE CALENDAR

MATHEMATICAL METHODS FOR THE PHYSICAL SCIENCES

Spring semester 2024

https://www.phys.uconn.edu/~rozman/Courses/P2400_24S/

Last modified: April 24, 2024

The chapter, section, and the page numbers below refer to the following editions of the course textbook: **HC** – Hung Cheng, *Advanced Analytic Methods in Applied Mathematics, Science, and Engineering,* Luban Press, 2006;

Tuesday	Thursday
Jan 16th	Jan 18th Lecture 1
Classes cancelled due to snow storm	Computer algebra systems: a very short introduction to <i>Mathematica</i> (handout)
	Differentiating under the integral sign (handout)
	Homework 1 assigned: due on 1/25/2024
Jan 23rd Lecture 2	Jan 25th Lecture 3
Differentiating under the integral sign, II (handout)	Gamma function, $\Gamma(x)$, Beta function, $B(x,y)$ (handout)
	Homework 2 assigned: due on 2/1/2024
Jan 30th Lecture 4	Feb 1st Lecture 5
Gamma function, $\Gamma(x)$, Beta function, $B(x, y)$, II (handout)	Euler's formula (handout)
Complex numbers, HC, Ch. 2, pp. 35–38	Coordinate and polar form; powers of complex numbers
	Homework 3 assigned: due on 2/8/2024
Feb 6th Lecture 6	Feb 8th Lecture 7
Algebra of complex numbers	Cauchy-Riemann conditions, II
Complex functions	Analytic functions. Integral of a complex function
Derivative of a complex function. Cauchy-Riemann	Cauchy's integral theorem (handout).
conditions. HC, Ch. 2, pp. 35–47.	Applications of Cauchy's theorem (handout)
	Homework 4 assigned: due on 2/15/2024
Feb 13th	Feb 15th Lecture 8
	Midterm I assigned; Due on 2/22/2024
Classes cancelled due to snow storm	Applications of Cauchy's theorem, II (handout)
	Cauchy's integral formula. HC , Ch. 2, pp. 51–53.
	Liouville theorem. (handout)

Tuesday	Thursday
Feb 20th Lecture 9	Feb 22nd Lecture 10
Taylor and Laurent series. HC , Ch. 2, pp. 53–57.	Calculating residues. HC , Ch. 2, pp. 58–59.
Poles, residues, Cauchy residue theorem. HC , Ch. 2,	Evaluating real integrals. HC , Ch. 2, pp. 59–70.
pp. 58–59.	Homework 5 assigned: due on 2/29/2024
Feb 27th Lecture 11	Feb 29th Lecture 12
Method of residues, II. (handout) HC, Ch. 2, pp. 59–70.	Method of residues, III. Calculating residues for higher order poles.
	Homework 6 assigned: due on 3/7/2024
Mar 5th Lecture 13	Mar 7th Lecture 14
Constructing "terrible" integrals (handout)	Laplace method for differential equations, II (handout)
Laplace method for differential equations (handout)	Homework 7 assigned: due 3/21/2024
Mar 12th	Mar 14th
Spring Recess – No classes	Spring Recess – No classes
Mar 19th Lecture 15	May 21st
Mar 19th Lecture 15 The method of dominant balance	Mar 21st Lecture 16 Midterm II
Harmonic oscillator in quantum mechanics, II (handout).	Due on March 28, 2024.
Trainfonc oscillator in quantum mechanics, ii (mandout).	Laplace method for differential equations, III (handout)
Mar 26th Lecture 17	Mar 28th Lecture 18
Laplace method for integrals, I (handout).	Laplace method for integrals, II (handout). Moving extrema. Asymptotics for Gamma function.
	Homework 8 assigned: due on 4/4/2024
Apr 2nd Lecture 19	Apr 4th Lecture 20
The method of stationary phase, I (handout).	The method of stationary phase, II (handout).
	Homework 9 assigned: due on 4/11/2024
Apr 9th Lecture 21	Apr 11th Lecture 22
The method of stationary phase, III. Integration by parts.	The method of stationary phase, IV. (handout).
(handout).	Homework 10 assigned: due on 4/25/2024
Apr 16th Lecture 23	Apr 18th Lecture 24
Perturbation methods. (handout).	Perturbation methods, II. (handout).
Apr 23rd Lecture 25	Apr 25th Lecture 26
Midterm III	Perturbation methods, IV. (handout).
Due on May 2, 2024, 6 pm – 8 pm, in GS-119	Course review
Perturbation methods, III. (handout).	

Tuesday	Thursday
Apr 30th	May 2nd
Week of Finals	Week of Finals