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1 Oscillator with nonlinear friction

Let’s consider the following second order non-linear differential equation

d2x

dt2
+ ε

(
dx
dt

)3

+ x = 0, ε > 0 (1)

with the initial conditions
x(0) = 1., ẋ(0) = 0. (2)

The equation describes a non-liner oscillator with the “friction” force that is proportional
to the third power of the velocity. The parameter ε is a positive parameter that describes
the rate of the energy loss in the system. Equation (1) has no exact analytic solutions,
therefore below we compare our analytics with the results of numerical calculations.

1.1 Numerical integration

To solve Eq. (1) numerically, we introduce a new dependent variable, y = ẋ and rewrite
Eq. (1) as a system of two first order differential equations for two unknown x(t) and y(t),

dx
dt

= y,

dy
dt

= −εy3 − x,
(3)

A typical result of the numerical integration of Eqs. (3) is presented in Fig. 1.
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Figure 1: Typical solution of Eq. (1) for small values of ε; ε = 0.2 (solid line). The
approximation Eq. (35) is also shown (dashed line).

1.2 Regular perturbation theory for nonlinear oscillator

ẍ+ x = −εẋ3. (4)

A perturbative solution of this equation is obtained by expanding x(t) as a power series in
ε:

x = x0 + εx1 + ε2x2 + . . . , (5)

where x0(0) = 1, ẋ0(0) = 0, and xn(0) = 0, ẋn(0) = 0 for n ≥ 1. Substituting Eq. (5) into
Eq. (4) and equating coefficients of like powers of ε gives a sequence of linear differential
equations of which all but the first are inhomogeneous:

ẍ0 + x0 = 0, (6)
ẍ1 + x1 = −ẋ3

0, (7)
. . . . . .

ẍn + xn = −ẋ3
n−1, (8)

. . . . . .

The solution of Eq. (6) which satisfies x0(0) = 1, ẋ0(0) = 0 is

x0(t) = cos(t). (9)
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To solve Eq. (11), recall that

sin3 t =
3
4

sin(t)− 1
4

sin(3t). (10)

ẍ1 + x1 = −ẋ3
0 = sin3(t), x1(0) = 0, ẋ1(0) = 0. (11)

x1(t) =
9

32
sin(t) +

1
32

sin(3t)− 3
8
t cos(t) (12)

The amplitude of oscillation of the solution Eq. (12) grows unbounded as t→∞. The term
t cos(t), whose amplitude grows with t, is said to be a secular term. The secular term has
appeared because sin3(t) on the right of Eq. (11) contains a component, ∼ sin(t), whose
frequency equals the natural frequency of the unperturbed oscillator, i.e. because the
inhomogeneity ∼ sin(t) is itself a solution of the homogeneous equation associated with
Eq. (11): ẍ1 +x1 = 0. In general, secular terms always appear whenever the inhomogeneous
term is itself a solution of the associated homogeneous constant-coefficient differential
equation. A secular term always grows more rapidly than the corresponding solution of
the homogeneous equation by at least a factor of t.

However, the correct solution of Eq. (4), x(t), remains bounded for all t. Indeed, let’s
multiply Eq. (4) by ẋ.

ẋẍ+ ẋx = −εẋ4. (13)

Rearraging terms in the left hand side, we obtain:

ẋẍ+ ẋx =
1
2

d
dt

(
dx
dt

)2

+
1
2

d
dt
x2 =

d
dt

1
2

(
dx
dt

)2

+
1
2
x2

 =
dE
dt
, (14)

where

E ≡ 1
2

(
dx
dt

)2

+
1
2
x2 =

1
2
ẋ2 +

1
2
x2 (15)

is the mechanical energy of the oscillator. The energy Eq. (15) is always non-negative. For
the initial condition Eq. (2), E(0) = 1

2 .

On the other hand the right hand side of Eq. (13) is always non-positive. Therefore,

d
dt
E ≤ 0, (16)

i.e.
E(t) ≤ E(0) (17)

which means that that neither x(t) nor ẋ can grow unbounded, in contradiction with the
result Eq. (12).
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1.3 The method of averaging

To obtain an approximate analytic solution of Eq. (1), we use a powerful method called
the method of averaging. It is applicable to equations of the following general form:

d2x

dt2
+ x = εF

(
x,

dx
dt

)
, (18)

where in our case

F

(
x,

dx
dt

)
= −

(
dx
dt

)3

. (19)

We seek a solution to Eq. (18) in the form:

x = a(t)cos(t +ψ(t)) , (20)

dx
dt

= −a(t)sin(t +ψ(t)) . (21)

The motivation for this ansatz is that when ε is zero, Eq. (18) has its solution of the form
Eq. (20) with a and ψ constants. For small values of ε we expect the same form of the
solution to be approximately valid, but now a and ψ are expected to be slowly varying
functions of t.

Differentiating Eq. (20) and requiring Eq. (21) to hold, we obtain the following relation:

ȧcos(t +ψ(t))− aψ̇ sin(t +ψ(t)) = 0. (22)

where we introduced the notation:

ȧ ≡ da
dt
, ψ̇ ≡

dψ
dt
. (23)

Differentiation of Eq. (21) and substitution the result into Eq. (18) gives

−ȧsin(t +ψ)− aψ̇ cos(t +ψ) = εa3 sin3 (t +ψ) . (24)

Solving Eqs. (22) and (24) for ȧ and ψ̇, we obtain the following system of two differential
equations:

da
dt

= −εa3 sin4 (t +ψ) (25)

dψ
dt

= −εa2 sin3 (t +ψ)cos(t +ψ). (26)
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So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small.

Hence a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ψ(t) on the right hand sides of Eqs. (25) and (26) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

1
2π

∫ 2π

0
dφ. . . (27)

Eqs. (25) and (26) become

da
dt

= −ε 1
2π

∫ 2π

0
dφa3 sin4 (φ) (28)

dψ
dt

= −ε 1
2π

∫ 2π

0
dφa2 sin3 (φ)cos(φ) (29)

The right hand side of Eq. (29) is zero. The averaging in Eq. (28) can be done using the
following trigonometric identities:

sin2(φ) =
1
2

(1− cos(2φ)) ,

1
2π

∫ 2π

0
dφcos2(nφ) =

1
2π

∫ 2π

0
dφsin2(nφ) =

1
2
, n = 1,2, . . .

1
2π

∫ 2π

0
dφcos(nφ) =

1
2π

∫ 2π

0
dφsin(nφ) = 0, n = 1,2, . . .

1
2π

∫ 2π

0
dφsin4(φ) =

1
2π

∫ 2π

0
dφ

(1
2

(1− cos(2φ))
)2

=

=
1
4

1
2π

∫ 2π

0
dφ

(
1− 2cos(2φ) + cos2(2φ)

)
=

=
1
4

(
1 +

1
2

)
=

3
8

(30)

The averaged equations of motion are as following:

da
dt

= −ε3
8
a3 (31)

dψ
dt

= 0 (32)
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The solution of Eq. (32) is
ψ = const. (33)

We can chose the constant to be 0.

Eq. (31) can be solved by separating the variables:

da
a3 = −3

8
εdt −→ 1

a2(t)
=

3
4
εt +

1
a2(0)

−→ a(t) =
1√

3
4εt +

1
a2(0)

, (34)

where a(0) is the amplitude of oscillations at t = 0. Finally,

x(t) =
cos(t)√

3
4εt +

1
a2(0)

(35)

2 Van der Pol oscillator

The second order non-linear autonomous differential equation

d2x

dt2
+ ε

(
x2 − 1

) dx
dt

+ x = 0, ε > 0 (36)

is called van der Pol equation. The parameter ε is positive and indicates the nonlinearity
and the strength of the damping. The equation models a non-conservative system in which
energy is added to and subtracted from the system, resulting in a periodic motion called a
limit cycle. The sign of the “coefficient” in the damping term in Eq. (36),

(
x2 − 1

)
changes,

depending whether |x| is larger or smaller than one, describing the inflow and outflow of
the energy.

The equation was originally proposed in the late 1920-th to describe stable oscillations in
electrical circuits employing vacuum tubes.

Van der Pol oscillator is the example of a system that exibits the so called limit cycle. A limit
cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not
closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories
approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit
cycle is in general unstable.

Stable limit cycles model systems, e.g. the beating of a heart, that exhibit self-sustained
oscillations. These systems oscillate even in the absence of external periodic forcing. There
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is a standard oscillation of some preferred period, waveform, and amplitude. If the system
is perturbed slightly, it returns to the standard cycle.

Limit cycles are inherently nonlinear phenomena. They can’t occur in linear systerns.
Of course, a linear system, such as a linear differential equation, can have closed orbits
– periodic solutions, but they won’t be isolated. If x(t) is a periodic solution, then so
is αx(t) for any constant α , 0. Hence x(t) is surrounded by a ’family’ of closed orbits.
Consequently, the amplitude of a linear oscillation is set entirely by its initial conditions.
Any slight disturbance to the amplitude will persist forever. In contrast, limit cycle
oscillations are determined by the structure of the system itself.

Limit cycles are only possible in systems with dissipation. System that conserve energy do
not have isolated closed trajectories . . .

2.1 Numerical integration

Let’s write Eq. (36) as a first order system of differential equations,
dx
dt

= y,

dy
dt

= −ε
(
x2 − 1

) dx
dt
− x,

(37)

The results of numerical integration of Eqs. (37) are presented in Figs. 2–3.

Numerical integration of Eq. (37) shows that every initial condition (except x = 0, ẋ = 0)
approaches a unique periodic motion. The nature of this limit cycle is dependent on the
value of ε. For small values of ε the motion is nearly harmonic.

Numerical integration shows that the limit cycle is a closed curve enclosing the origin in
the x-y phase plane. From the fact that Eqs. (37) are invariant under the transformation
x → −x, y → −y, we may conclude that the curve representing the limit cycle is point
symmetric about the origin.

2.2 Averaging

In order to obtain information regarding the approach to the limit cycle, we use the method
of averaging. The method is applicable to equations of the following general form:

d2x

dt2
+ x = −εF

(
x,

dx
dt

)
, (38)
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Figure 2: Typical solution of van der Pol equation for small values of ε; top graph – x(t),
bottom graph – ẋ(t); ε = 0.1 (solid line). The approximations Eq. (71), (72) shown as
dashed line.

where in our case

F

(
x,

dx
dt

)
=

(
x2 − 1

) dx
dt
. (39)

Page 8 of 19



PHYS 2400 Nonlinear oscillators Spring semester 2024

-2

-1

0

1

2

-2 -1 0 1 2

ẋ
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Figure 3: Typical phase space trajectory of van der Pol equation for small values of ε.

We seek a solution to Eq. (38) in the form:

x = a(t)cos(t +ψ(t)) , (40)

dx
dt

= −a(t)sin(t +ψ(t)) . (41)

Our motivation for this ansatz is, as in the example before, that when ε is zero, Eq. (38) has
its solution of the form Eq. (40) with a and ψ constants. For small values of ε we expect
the same form of the solution to be approximately valid, but now a and ψ are expected to
be slowly varying functions of t. Differentiating Eq. (40) and requiring Eq. (41) to hold, we
obtain:

da
dt

cos(t +ψ(t))− a
dψ
dt

sin(t +ψ(t)) = 0. (42)

Differentiating Eq. (41) and substituting the result into Eq. (38) gives

−da
dt

sin(t +ψ)− a
dψ
dt

cos(t +ψ) = −εF (a(t)cos(t +ψ) ,−a(t)sin(t +ψ)) . (43)

Solving Eqs. (42) and (43) for
da
dt

and
dψ
dt

, we obtain:

da
dt

= εF (a(t)cos(t +ψ) ,−a(t)sin(t +ψ)) sin(t +ψ) (44)

dψ
dt

=
ε
a
F (acos(t +ψ) ,−asin(t +ψ)cos(t +ψ) , (45)
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where
F (. . .) = −a

(
a2 cos2 (t +ψ)− 1

)
sin(t +ψ) . (46)

da
dt

= −εa
(
a2 cos2 (t +ψ)− 1

)
sin2 (t +ψ) (47)

dψ
dt

= −ε
(
a2 cos2 (t +ψ)− 1

)
sin(t +ψ)cos(t +ψ) (48)

So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small.

Hence a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations
the quantities a(t) and ψ(t) on the right hand sides of Eqs. (47) and (48) can be treated as
nearly constant, and thus these right hand sides may be replaced by their averages:

. . . ≡ ⟨ . . .⟩ ≡ 1
2π

2π∫
0

. . . dφ (49)

Eqs. (47) and (48) become

da
dt

= −εa3 cos2(φ)sin2(φ) + εa sin2(φ) (50)

dψ
dt

= −εa2 cos3(φ)sin(φ) + εcos(φ)sin(φ) (51)

As shown in the Appendix,

cos3(φ)sin(φ) ≡ 1
2π
I3,1 = 0, (52)

cos(φ)sin(φ) ≡ 1
2π
I1,1 = 0, (53)

thus the right hand side of Eq. (51) is zero. Therefore,

dψ
dt

= 0, (54)

i.e. ψ = C, where C is an integration constant. We can chose that

ψ = 0. (55)
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The averaged terms in Eq. (47) are as following:

cos2(φ)sin2(φ) ≡ 1
2π
I2,2 =

1
8
, (56)

sin2(φ) ≡ 1
2π
I2,0 =

1
2
, (57)

where Eq. (116) and (117) have been used.

Thus, the averaged Eq. (50) is
da
dt

=
ε
8
a (4− a2). (58)

Eq. (58) can be solved separating variables:

da
a (2− a) (2 + a)

=
ε
8

dt. (59)

Decomposing the left hand side into partial fractions,

1
a(2− a)(2 + a)

=
1
4

1
a

+
1
8

1
2− a

− 1
8

1
2 + a

, (60)

we obtain

2
da
a

+
da

2− a
− da

2 + a
= εdt, (61)

2
da
a
− d(2− a)

2− a
− d(2 + a)

2 + a
= εdt, (62)

dlog
(
a2

)
−dlog |2− a| −dlog(2 + a) = εdt. (63)

Integrating both sides

log
(

a2

(a+ 2) |2− a|

)
= ε(t − t0). (64)

We can choose an integration constant t0 to be 0. Exponentiating,

a2

(a+ 2) |2− a|
= eεt, (65)

which is a transcendental equation for a(t).

Since we are primary interested in the limit cycle solution of the van der Pol equation, we
do not need the complete solution of Eq. (65) but only its limit as t→∞.
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Inverting Eq. (65), we get

(a+ 2) |2− a|
a2 = e−εt→ 0 as t→∞, (66)

which is possible if a(∞) = 2.

To find the rate of approach to the limit cycle, we substitute the solution in the form

a(t) = 2− δ(t) (67)

into Eq. (66) and keep only the term linear in δ. We assume that the initial conditions are
such that a < 2, so that δ(t) > 0.

(a+ 2) |2− a|
a2 =

(4 + δ(t))δ(t)
4 + 2δ(t) + δ(t)2 ≈

4δ(t)
4 + 2δ(t)

=
δ(t)

1 + 1
2δ(t)

≈ δ(t)
(
1− 1

2
δ(t)

)
≈ δ(t). (68)

We obtain that
δ(t) = e−εt. (69)

Thus,
a(t) ≈ 2− e−εt as t→∞. (70)

Finally, for t ≥ ε−1,
x(t) = a(t)cos(t +ψ(t)) =

(
2− e−εt

)
cos t, (71)

ẋ(t) = −a(t)sin(t +ψ(t)) = −
(
2− e−εt

)
sin t (72)

are the parametric equations of the limit cycle in the phase plane.

3 Oscillator with the slowly changing frequency

The technique of averaging is applicable to nonlinear oscillators that are described by
differential equations with slow changing explicit time-dependent terms:

d2x

dt2
+ x = −εF

(
x,

dx
dt
, εt

)
, (73)

Here the new slow time dependence in the non-linear term is highlighted in bold.

Consider the oscillator with the slowly changing frequency.

d2x

dt2
+ω2(εt)x = 0, (74)
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where
ω(εt) , 0. (75)

To reduce Eq. (74) to the form (74), consider the change of independent variable t:

τ = f (t) (76)

dx
dt

=
dx
dτ

dτ
dt

=
df
dt

dx
dτ
, (77)

d2x

dt2
=

d
dt

(
dx
dt

)
=

d
dt

(
df
dt

dx
dτ

)
=

d2f

dt2
dx
dτ

+
df
dt

d
dt

(
dx
dτ

)
=

d2f

dt2
dx
dτ

+
df
dt

d
dτ

(
dx
dτ

)
df
dt

=
d2f

dt2
dx
dτ

+
(

df
dt

)2 d2x

dτ2 (78)

Substituting Eq. (78) into Eq. (74) and introducing the notations

ẋ =
dx
dτ
, ẍ =

d2x

dτ2 , (79)

(
df
dt

)2

ẍ+
d2f

dt2
ẋ+ω2(εt)x = 0. (80)

Let’s choose (
df
dt

)2

=ω2(εt) →
df
dt

=ω(εt), (81)

then

τ =
∫ t

ω(εu)du, dτ =ω(εt)dt (82)

d2f

dt2
=

dω(εt)
dt

= εω′(T ), (83)

where
T = εt. (84)

Eq. (80) can be written as following:

d2x

dτ2 + ε
ω′(εt)
ω2(εt)

dx
dτ

+ x = 0. (85)
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Eq. (85) is in the form Eq. (73). Using the method of averaging we obtain the following
equations for a(t) and ψ(t):

da
dτ

= −ε ω
′(εt)

ω2(εt)
a sin2(τ +ψ), (86)

dψ
dτ

= −ε ω
′(εt)

ω2(εt)
a sin(τ +ψ)cos(τ +ψ). (87)

Averaging Eq. (86), (87) we obtain:

da
dτ

= −ε
2
ω′(εt)
ω2(εt)

a, (88)

dψ
dτ

= 0. (89)

Eq. (89) tells us that ψ = const, and we can chose

ψ = 0. (90)

Eq. (88) can be solved separating variables

da
a

= −ε
2
ω′(εt)
ω2(εt)

dτ = −ε
2
ω′(εt)
ω2(εt)

ω(εt)dt = −1
2
ω′(εt)
ω(εt)

d(εt). (91)

dlog(a) = −1
2

dlog(ω(εt)), (92)

log(a) = log

 1√
ω(εt)

+C′, (93)

a =
C√
ω(εt)

(94)

x(t) = a(t)cos(τ) =
C√
ω(εt)

cos
(∫ t

0
ω(εt′)dt′

)
. (95)

ẋ(t) = −C
√
ω(εt)

′
sin

(∫ t

0
ω(εt′)dt′

)
. (96)

E(t) =
1
2
ẋ2 +

1
2
ω(εt)2x2 =

C2

2
ω, (97)

E(t)
ω(εt)

= const. (98)
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4 Problems

Problem 1. Find (a) the time dependence of the amplitude and (b) the frequency of
the Duffing oscillator:

ẍ+ x+ ϵx3 = 0, (99)

where ϵ is a small parameter (ϵ≪ 1); x(0) = 1, ẋ(0) = 0. Compare your analytic approxima-
tion with the numerical solution of the differential equation.

Figure 4: Typical solution
of the Duffing equation
Eq. (99), ε = 0.2 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line). -1.0
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Problem 2. Find the time dependence of the amplitude of an oscillator with “dry”
friction:

ẍ+γ sign(ẋ) + x = 0, (100)

where γ is a small parameter (γ ≪ 1); x(0) = 1, ẋ(0) = 0,

sign(α) =


1, α > 0,
0, α = 0,
−1 α < 0.

Determine the time until the full stop.

Compare your analytic approximation with the numerical solution of the differential
equation.

Problem 3. Find the solution of the following nonlinear differential equation:

ẍ+ ϵẋ5 + x = 0, x(0) = x0, ẋ(0) = 0, (101)

where ϵ is a small positive parameter. Compare your analytic approximation with the
numerical solution of the differential equation.
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Figure 5: Typical solution
of the dry friction oscilla-
tor Eq. (100) for small val-
ues of γ ; γ = 0.03 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line).
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Figure 6: Typical solution
of the nonlinear friction os-
cillator Eq. (101) for small
values of ϵ; γ = 0.03 (solid
line). The approximation
obtained by the method
of averaging is also shown
(dashed line).
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Appendix A. Integrals for the method of averaging

The method of averaging requires the evaluation of integrals of the form

Ip,q =

2π∫
0

cosp x sinq xdx, (102)

where p and q are positive integers.

First, notice that the integration in Eq. (102) is over the period of the integrand, thus

2π∫
0

cosp x sinq xdx =

2π+u∫
u

cosp x sinq xdx (103)

for arbitrary u.

Ip,q is zero if at least one of p or q is odd. Indeed, consider separately the three possible
cases:

Page 16 of 19



PHYS 2400 Nonlinear oscillators Spring semester 2024

1. If p is even and q is odd, i.e. if p = 2m and q = 2n+ 1, then

I2m,2n+1 =

2π∫
0

cos2m(x)sin2n+1(x)dx =

π∫
−π

cos2m(x)sin2n+1(x)dx = 0 (104)

since the integrand is an odd function.

2. If both p and q are odd, i.e. p = 2m+ 1 and q = 2n+ 1, then

I2m+1,2n+1 =

2π∫
0

cos2m+1(x)sin2n+1(x)dx =
1
2

π∫
−π

cos2m(x)sin2n(x)sin(2x)dx = 0 (105)

since the integrand is again an odd function; here we used the identity cos(x) sin(x) =
1
2 sin(2x).

3. If p is odd and q is even, i.e. if p = 2m + 1 and q = 2n, then, using the identities
sin(x) = cos

(
x − π2

)
and cos(x) = −sin

(
x − π2

)
,

I2m+1,2n =

2π∫
0

cos2m+1(x)sin2n(x)dx = −
2π∫
0

sin2m+1
(
x − π

2

)
cos2n

(
x − π

2

)
dx

= −

3
2π∫
− 1

2π

sin2m+1(u)cos2n(u)du = −
π∫
−π

sin2m+1(u)cos2n(u)du = 0 (106)

since the last integral is from an odd function.

To evaluate Ipq when both p and q are even, let’s proceed as following.

I2m,2n =

2π∫
0

(
cos2(x)

)m (
sin2(x)

)n
dx = 2

π∫
0

(
cos2(x)

)m (
1− cos2(x)

)n
dx

= 2

π
2∫

0

(
cos2(x)

)m (
1− cos2(x)

)n
dx+ 2

π∫
π
2

(
cos2(x)

)m (
1− cos2(x)

)n
dx. (107)
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Let’s introduce the new integration variable,

u = cos2x, 0 ≤ u ≤ 1, du = −2cosx sinxdx. (108)

In the first integral in Eq. (108), 0 ≤ x ≤ π
2 , thus both cos(x) and sin(x) are positive, therefore

cos(x) = u
1
2 and sin(x) = (1−u)

1
2 . So,

du = −2u
1
2 (1−u)

1
2 dx, (109)

i.e.

dx = − du

2u
1
2 (1−u)

1
2

. (110)

In the second integral in Eq. (108), π2 ≤ x ≤ π, thus cos(x) is negative and sin(x) is positive,

therefore cos(x) = −u 1
2 and sin(x) = (1−u)

1
2 . So,

du = 2u
1
2 (1−u)

1
2 dx, (111)

i.e.

dx =
du

2u
1
2 (1−u)

1
2

. (112)

Substituting Eqs. (111)–(112) into Eq. (107), we obtain

I2m,2n = −
0∫

1

um−
1
2 (1−u)n−

1
2 du +

1∫
0

um−
1
2 (1−u)n−

1
2 du = 2

1∫
0

um+ 1
2−1(1−u)n+ 1

2−1du. (113)

The last integral is B
(
m+ 1

2 ,n+ 1
2

)
, therefore

I2m,2n = 2B
(
m+

1
2
,n+

1
2

)
=

2Γ
(
m+ 1

2

)
Γ
(
m+ 1

2

)
Γ (m+n+ 1)

. (114)

In particular, Γ
(

1
2

)
=
√
π and Γ (1) = 1, thus

I0,0 =
2Γ 2

(
1
2

)
Γ (1)

= 2π. (115)

This trivial by itself result (obviously I0,0 =
∫ 2π

0
dx = 2π) confirms the correctness of

Eq. (114).
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Furthermore, Γ
(
1 + 1

2

)
= 1

2Γ
(

1
2

)
= 1

2
√
π, Γ (2) = 1, Γ (3) = 2Γ (2) = 2, thus

I2,0 =
2Γ

(
1 + 1

2

)
Γ
(

1
2

)
Γ (2)

= Γ 2
(1
2

)
= π (116)

and

I2,2 =
2Γ 2

(
1 + 1

2

)
Γ (3)

=
π
4
. (117)

Finally, Γ
(
2 + 1

2

)
= 3

2Γ
(

3
2

)
= 3

4
√
π, and

I4,0 =
2Γ

(
2 + 1

2

)
Γ
(

1
2

)
Γ (3)

=
3π
4
. (118)
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