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Laplace’s method is a general technique for obtaining the asymptotic behavior of integrals in
which the large parameter λ, λ→∞, appears in the exponent:

I(λ) =

b∫
a

f (t)eλφ(t)
dt =

b∫
a

f (t)
(
eφ(t)

)λ
dt. (1)

Here f (t) and φ(t) are real continuous functions, independent of λ. Integrals of this form
are called Laplace integrals. Laplace’s method relies on the following observation: if the real
continuous function φ(t) has its maximum on the interval a ≤ t ≤ b at t = t0 and if f (t0) , 0,
then it is only the immediate neighborhood of t = t0 that contributes to the asymptotic
expansion of I(λ) for large λ.

Indeed, we can always write eφ(t) as eφ(t0) eψ(t), where eφ(t0) is just a constant multiplication
factor that can be factored out of the integral. Here we defined ψ(t) ≡ φ(t) − φ(t0). The
maximal value of ψ(t) is zero, thus the maximal value of eψ(t) is one. A typical behavior of
eψ(t) is sketched in Fig. 1 in solid line. As we rise eψ(t) into power λ, its maximum stays “fixed”
at (x0,1) but its wings are “moving down” toward the x axis, thus making the graph narrower
(see Fig. 1). Therefore we can replace f (t) and φ(t) with their approximations that need to be
good ones only in the vicinity of t0.

The logic of the Laplace method works without changes for a more general form of the
integrand:

b∫
a

f (t)
(
κ(t)

)λ
dt, (2)

where λ is a large parameter as before, λ → ∞, κ(t) is real continuous function that is

Page 1 of 7

https://www.phys.uconn.edu/~rozman/Courses/P2400_23S/


PHYS 2400 Laplace methods for integrals Spring 2023

Figure 1: Changes of the inte-
grand in Laplace integral as the
parameter λ is increasing.
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independent of λ, doesn’t change the sign on the interval of integration a ≤ t ≤ b (say it is
positive), and has a single maximum on that interval.

Let’s consider simple examples of Laplace’s method.

Example 1. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

π
2∫

0

eλcos(x)

x2 + 4
dx. (3)

Since only small |x|, such that |x| ∼ 1√
λ
� 1, are important in the integral Eq. (11), we can

approximate the integrand as following:

cos(x) ≈ 1− x
2

2
, −→ eλcos(x) ≈ eλe−

λ
2 x

2
, (4)

1
x2 + 4

≈ 1
4
. (5)

Thus,

I(λ) ∼ 1
4
eλ
∞∫

0

e−
λ
2 x

2
dx =

1
8

√
2π
λ
eλ =

√
π

32λ
eλ . (6)

Example 2. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

1∫
0

e−λsin3(x) dx. (7)
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Figure 2: Asymptotics Eq. (6)
(solid line) compared to the nu-
merically evaluated integral (3)
(dashed line) for 2 ≤ x ≤ 8. No-
tice the logarithmic scale on y
axis.
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The maximum of the function in the exponent, e−sin3 x is at x = 0, so in this example the main
contribution to the integral is coming from the vicinity of the left endpoint of the integration
range, x = 0, where sin3x ∼ x3.

I(λ) ∼
∞∫

0

e−λx
3
dx. (8)

To evaluate the last integral, let’s introduce a new integration variable, u = λx3:

x3 =
u
λ
−→ x =

u
1
3

λ
1
3

−→ dx =
u

1
3−1

3λ
1
3

du. (9)

I(λ) ∼ 1

3λ
1
3

∞∫
0

e−uu
1
3−1 du =

Γ (1
3 )

3λ
1
3

=
Γ (4

3 )

λ
1
3

. (10)

Example 3. Find the leading term of the asymptotics of the following integral for λ→∞:

I(λ) =

4∫
−3

e−λx
2

log
(
1 + x2

)
dx. (11)

Since only small |x|, such that |x| ∼ 1√
λ
� 1, are important in the integral Eq. (11) (for |x| ≥ 1√

λ
the integrand is negligibly small due to the exponent’s factor), we can approximate the
function in the integrand as following:

log
(
1 + x2

)
∼ x2. (12)

Page 3 of 7



PHYS 2400 Laplace methods for integrals Spring 2023

Figure 3: Asymptotics Eq. (10)
(solid line) compared to the nu-
merically evaluated integral (7)
(dashed line) for 40 ≤ λ ≤ 100.
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Thus,

I(λ) ∼
4∫
−3

e−λx
2
x2 dx ∼

∞∫
−∞

e−λx
2
x2 dx = 2

∞∫
0

e−λx
2
x2 dx. (13)

Introducing the new integration variable u,

u = λx2 −→ x2 =
u
λ
−→ x =

1
√
λ
u

1
2 −→ dx =

1

2
√
λ
u−

1
2 du. (14)

I(λ) ∼ λ−
3
2

∞∫
0

e−uu
1
2 du = λ−

3
2 Γ

(3
2

)
= λ−

3
2

1
2
Γ

(1
2

)
=
√
π

2
λ−

3
2 (15)

Figure 4: Asymptotics Eq. (15)
(solid line) compared to the
numerically evaluated integral
Eq. (11) (dashed line) for 10 ≤
λ ≤ 50.
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Example 4. Find the leading term of the asymptotics of the following integral for n� 1:

I(n) =

1∫
−1

(cosx)n dx, (16)

Since only small |x|, such that |x| ∼ 1√
λ
� 1, are important in the integral, we can approximate

cosx ∼ 1− x
2

2
∼ e−

x2
2 . (17)

Thus,

I(n) =

1∫
−1

(
e−

x2
2

)n
dx ∼

∞∫
−∞

e−
nx2

2 dx =

∞∫
−∞

e−
(√

n
2x

)2

dx = (18)

=

√
2
n

∞∫
−∞

e−
(√

n
2x

)2

d
(√

n
2
x

)
=

√
2
n

∞∫
−∞

e−u
2

du = (19)

=

√
2π
n
. (20)

Figure 5: Asymptotics Eq. (20)
(solid line) compared to the nu-
merically evaluated integral (16)
(dashed line) for 10 ≤ n ≤ 50.
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Example 5. Find the leading term of the asymptotics of gamma function, Γ (x), for x→∞:

Γ (x) =

∞∫
0

e−ttx−1 dt =

∞∫
0

e−t+x log t 1
t

dt (21)
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The function in the exponent in Eq. (21),

f (t) = −t + x log t, (22)

has its maximum at t = t0 which depends upon x:

df
dt

= 0, −→ −1 +
x
t

= 0 −→ t0 = x. (23)

To make the maximum independent of x, let’s introduce a new integration variable, s,

s =
t
x
, −→ t = xs, −→ dt = xds,

dt
t

=
ds
s
, (24)

f (t) = −t + x log t = −xs+ x logs+ x logx. (25)

Γ (x) = ex logx

∞∫
0

e−x(s−logs) 1
s

ds. (26)

Let’s apply the Laplace’s method to the integral in Eq. (26):

f (s) = s − logs,
df
ds

= 1− 1
s
. (27)

df
ds

= 0, −→ s0 = 1. (28)

f (s0) = 1,
d2f

ds2
=

1
s2
, −→

d2f

ds2
(s0) = 1. (29)

f (s) ≈ f (s0) +
1
2

d2f

ds2
(s0)(s − s0)2 = 1 +

1
2

(s − 1)2. (30)

∞∫
0

e−xf (s) 1
s

ds ∼
∞∫

0

e−x(1+ 1
2 (s−1)2) 1

s0
ds ∼ e−x

∞∫
−∞

e−
1
2x(s−1)2

ds = e−x
∞∫
−∞

e−
1
2xs

2
ds. (31)

The last integral is a Gaussian one:

∞∫
−∞

e−
1
2xs

2
ds =

√
2π
x
, (32)

therefore ∞∫
0

e−x(s−logs) 1
s

ds ∼ e−x
√

2π
x
. (33)
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Finally, combining Eq. (26) and Eq. (33)

Γ (x) ∼ ex logxe−x
√

2π
x

=

√
2π
x

(x
e

)x
. (34)

The expression Eq. (34) is the leading term of the Stirling approximation for Gamma function.

Figure 6: Asymptotics Eq. (34)
(solid line) compared to the nu-
merically evaluated integral (21)
(dashed line) for 2 ≤ x ≤ 8. No-
tice the logarithmic scale on y
axis.

0.1

1.0

10.0

100.0

1000.0

10000.0

2 3 4 5 6 7 8

Γ
(x

)

x

Γ(x) =
∞∫
0
e−ttx−1 dt

References

[1] Carl M. Bender and Steven A. Orszag. Advanced Mathematical Methods for Scientists and
Engineers. Springer Verlag, 1999.

Page 7 of 7


