Name: _____

Date: _____

Collaborators:

Question:	1	2	3	4	5	6	Total
Points:	20	20	20	20	5	5	90
Score:							

Instructor/grader comments:

Course concepts

- 1. (a) (10 points)
 - □ I've read the Section "Low entropy expressions", from the book *Street*-*Fighting Mathematics*, pp. 80–82, by Sanjoy Mahajan, MIT, 2010
 - (b) (10 points)
 - □ I've read E. Wigner's article *The Unreasonable Effectiveness of Mathematics in the Natural Sciences*.

Sign and date here:

Euler's formula

2. (20 points) Evaluate the following sum:

$$C(\theta) = \cos(\theta) + \cos(2\theta) + \dots + \cos(n\theta).$$

Answer:

$$C(x) = \frac{1}{2} \left[\frac{\sin\left(n + \frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}} - 1 \right]$$

Gamma and Beta functions

- 3. Evaluate the following expressions. Here Γ and *B* are Euler gamma and beta functions. Only the values of $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ and $\Gamma(1) = 1$ are known.
 - (a) (4 points) $\Gamma\left(\frac{5}{2}\right)$
 - (b) (8 points) $\Gamma\left(-\frac{3}{2}\right)$
 - (c) (4 points) $\Gamma(5)$
 - (d) (4 points) $B(\frac{1}{2}, \frac{5}{2})$

Leibniz' rule

4. (20 points) Find the positive value of x that maximizes the value of the following integral $I(x) = \int_{x-1}^{x+1} \frac{du}{\Gamma(u)}.$

Hints: Find the derivative of I(x). What is its value at the maximum of I(x)? Simplify the equation that you obtained using the relation $\Gamma(x + 1) = x\Gamma(x)$. Solve the equation and select the correct solution.

Answer: $x = \frac{1+\sqrt{5}}{2}$

Computer algebra

5. (5 points) Use a computer algebra system to expand the following function, f(x), into a power series about x = 0. Keep the terms up to $\sim x^3$.

$$f(x) = e^{\sqrt{\sin(x)}}$$

Print your mathematica session and attach the printout to the rest of your homework.

6. (5 points) Use a computer algebra system to evaluate the following indefinite integral:

$$\int \frac{x}{1+\sin x} \,\mathrm{d}x$$

Print your mathematica session and attach the printout to the rest of your homework.