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It is possible (see e.g. [1, pp. 124-8], [2, Ch. VIII], [3, Apps. a-b], [4, Ch. 18], [5, Ch. 8.A], [6,
Ch. 5.3]) to represent solutions of differential equations by definite integrals in which the
independent variable appears as a parameter under the integral sign. In this compact form
various properties of different solutions to an equation become quite clear, asymptotic
expansions can be obtained directly, and numerical computations may be facilitated.

One of the most important applications of this method is due to Laplace and affects the
equation

(an + bnx)
dny
dxn

+ (an−1 + bn−1x)
dn−1y

dxn−1 + . . .+ (a0 + b0x)y = 0, (1)

whose coefficients are at most of the first degree in x. Let us try to find a solution of this
equation by taking for y an expression of the form

y(x) =
∫
C

Z(t)ext dt, (2)

where Z(t) is a function of the variable t and where C is an unspecified yet integration
contour independent of x. We have,

dpy
dxp

=
∫
C

Z(t) tp ext dt, (3)
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and, replacing y(x) and its derivatives in the left-hand side of Eq. (1) with Eq. (3), we find∫
C

Z(t)ext (P (t) + xQ(t))dt = 0. (4)

Here we introduced the notation

P (t) = ant
n + an−1t

n−1 + . . .+ a0, (5)
Q(t) = bnt

n + bn−1t
n−1 + . . .+ b0. (6)

Integrating Eq. (4) by parts, we get

0 =
∫
C

Z(t) [P (t) + xQ(t)] ext dt (7)

=
∫
C

Z(t)P (t)ext dt +
∫
C

Z(t)Q(t)dext (8)

=
∫
C

(
P (t)Z(t)− d

dt
[Q(t)Z(t)]

)
ext dt +

[
Q(t)Z(t)ext

]2
1

(9)

where the second term in Eq. (9) is evaluated at the end points of the contour C. If we
choose the contour so as to make this contribution vanish,[

Q(t)Z(t)ext
]2
1

= 0, (10)

then Eq. (2) will represent a solution to Eq. (1) if the function Z(t) satisfies the differential
equation

d
dt

[Q(t)Z(t)]− P (t)Z(t) = 0. (11)

Eq. (11) is the first order linear ordinary differential equation that can be solved separating
variables:

d[Q(t)Z(t)] = P (t)Z(t)dt, (12)

d[Q(t)Z(t)]
Q(t)Z(t)

=
P (t)
Q(t)

dt, (13)

dln(Q(t)Z(t)) =
P (t)
Q(t)

dt, (14)

ln(Q(t)Z(t)) =
∫
P (t)
Q(t)

dt +α1, (15)
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where α1 is an integration constant. Exponentiating,

Q(t)Z(t) = α exp
(∫

P (t)
Q(t)

dt
)
, (16)

where c = exp(α1) is another constant;

Z(t) =
α
Q(t)

exp
(∫

P (t)
Q(t)

dt
)
. (17)

Using Eq. (17) it is possible to determine suitable integration contour(s) to fulfill the
requirement of Eq. (10).

Example 1. A boundary-value problem

Find the solution of the following boundary value problem:

x
d3y

dx3 + 2y = 0, y(0) = 1, y(∞) = 0. (18)

Equation (18) is of Laplace’s type. Following the general method, we identify the coeffi-
cients ai and bi , and form the functions P (t), Q(t), and Z(t):

a3 = 0, b3 = 1, a2 = 0, b2 = 0, a2 = 0, b2 = 0, a0 = 2, b0 = 0, (19)

P (t) = a3t
3 + a2t

2 + a1t + a0 = 2, (20)

Q(t) = b3t
3 + b2t

2 + b1t + b0 = t3, (21)

next ∫
P (t)
Q(t)

dt = 2
∫

dt
t3

= − 1
t2
, (22)

and finally

Z =
α

t3
exp

(
− 1
t2

)
. (23)

The definite integral

y(x) =
∫
C

extZ(t)dt = α
∫
C

e
xt− 1

t2

t3
dt (24)

is a particular solution of Eq. (18) if the function

Q(t)Z(t) = ext−
1
t2 (25)
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takes on the same values at the ends of the path of integration.

Let’s assume that x > 0 and choose the integration contour along the negative real axis,
−∞ < t ≤ 0. Then,

Q(−∞)Z(−∞) =Q(0)Z(0) = 0, (26)

as required, and

y(x) = −2α

0∫
−∞

e
xt− 1

t2 d
( 1
t2

)
=

∞∫
0

e
− x√

u
−u

du, (27)

where we changed the integration variable to u = 1
t2

, 0 ≤ u <∞, and chose the integration
constant α = 1

2 to satisfy the boundary condition y(0) = 1.

Let’s verify that the integral Eq. (27) indeed satisfies Eq. (18). Indeed,

x
d3y

dx3 = x
d3

dx3

∞∫
0

e
− x√

u
−u

du = x

∞∫
0

(
d3

dx3 e
− x√

u

)
e−u du = −x

∞∫
0

e−u e
− x√

u
du

u
3
2

= 2x

∞∫
0

e−u e
− x√

u d
(

1
√
u

)
= 2

∞∫
0

e−u e
− x√

u d
(
x
√
u

)
= −2

∞∫
0

e−u d
(
e
− x√

u

)

= −2
[
e−ue

− x√
u

]∞
0
− 2

∞∫
0

e
− x√

u
−u

du = −2

∞∫
0

e
− x√

u
−u

du = −2y(x). (28)

To find the behavior of y(x) for large x we use the Laplace’s method for integrals – a
technique for obtaining the asymptotic behavior of integrals in which the large parameter
appears in an exponential. The method relies on the observation that if the integrand has
a maximum then for large x this maximum is very sharp. Then it is only the immediate
neighborhood of the maximum that contributes to the asymptotic expansion of the integral
for large x.

For the Integral Eq. (27) the maximum occurs when

d
du

(
− x
√
u
−u

)
= 0, −→ u =

(x
2

) 2
3
. (29)

Such a maximum is called a movable maximum because its location depends on x.
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For this kind of movable maximum problem, Laplace’s method can be applied if we first
transform the movable maximum to a fixed maximum. This is done by making the change
of variables

u = x
2
3 v,

x
√
u

=
x

2
3
√
v
, du = x

2
3 dv. (30)

Then,

y(x) = x
2
3

∞∫
0

e
−x

2
3
(

1√
v

+v
)
dv = x

2
3

∞∫
0

e−x
2
3 f (v) dv, (31)

where in the exponent we introduce the notation

f (v) =
1
√
v

+ v. (32)

The main contribution to the integral Eq. (31) comes from values of v in the small vicinity
of the minimum of f (v). The condition

df
dv

= −1
2
v−

3
2 + 1 = 0 (33)

gives the position of the minimum at v0 = 2−
2
3 . Expanding f (v) into Taylor series near v0

and keeping up to quadratic terms, we obtain:

f (v) ≈ 3
(
2−

2
3 + 2−

4
3 (v − v0)2

)
. (34)

Replacing in Eq. (31) f (v) with its approximation Eq. (34),

y(x) ≈ x
2
3 e−3x

2
3 2−

2
3

∞∫
0

e−3x
2
3 2−

4
3 (v−v0)2

dv ≈ x
2
3 e−3x

2
3 2−

2
3

∞∫
−∞

e−3x
2
3 2−

4
3w2

dw, (35)

where we introduced a new integration variable w = v − v0 and extended the lower integra-
tion limit to −∞. The last integral is a gaussian one,

∞∫
−∞

e−3x
2
3 2−

4
3w2

dw =
√

π

3x
2
3 2−

4
3

= x−
1
3 2

2
3

√
π
3
. (36)

Therefore,

y(x) ≈ 2

√
π
3

(x
2

) 1
3
e−3( x2 )

2
3
. (37)

The agreement between the approximation Eq. (37) numerical solution of differential
equation (18) is illustrated in Fig. 1.
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Figure 1: Asymptotics
Eq. (37) (solid line)
compared to the nu-
merically evaluated
integral (27) (dashed line)
for 2 ≤ x ≤ 20.
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Example 2. Summation of a series

Find the behavior of the following sum for large positive values of the argument:

S(x) =
∞∑
n=0

xn

(n!)2 . (38)

To obtain the large x behavior of S(x) we first construct a second-order differential equation
satisfied by S(x). Observe that

dS
dx

=
∞∑
n=1

xn−1

n! (n− 1)!
, (39)

x
dS
dx

=
∞∑
n=1

xn

n! (n− 1)!
, (40)

and
d

dx

(
x

dS
dx

)
=
∞∑
n=1

xn−1

((n− 1)!)2 =
∞∑
m=0

xm

(m!)2 = S(x). (41)

Thus S(x) is a solution to
d

dx

(
x

dS
dx

)
= S(x), (42)
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or

x
d2S

dx2 +
dS
dx
− S = 0. (43)

We need to supplement Eq. (43) by two boundary conditions. For x = 0 the series Eq. (38)
gives

S(0) = 1. (44)

The coefficients in the series Eq. (38) are all positive, hence S(x) is an increasing function
of x. Thus

S(∞) =∞. (45)

Equation (43) is of Laplace’s type. Following the general method, we form the functions
P (t) and Q(t):

a2 = 0, b2 = 1, a1 = 1, b1 = 0, a0 = −1, b0 = 0, (46)

P (t) = a2t
2 + a1t + a0 = t − 1, Q(t) = b2t

2 + b1t + b0 = t2, (47)∫
P (t)
Q(t)

dt =
∫ (1

t
− 1
t2

)
dt = log t +

1
t
, (48)

and

Z(t) =
α
Q(t)

exp
(∫

P (t)
Q(t)

dt
)

=
α
t

exp
(1
t

)
, (49)

where α is a yet unspecified integration constant.

The definite integral

S(x) =
∫
C

Z(t)ext dt = α
∫
C

ext+
1
t

t
dt (50)

is therefore a particular integral of Eq. (43) if we chose a closed contour C or if the function

Q(t)Z(t) = t ext+
1
t (51)

takes on the same values at the extremities of the integration contour C.

Let’s write Eq. (50) in a more symmetric form by introducing a new integration variable, τ ,

τ =
√
x t, t =

τ
√
x
,

1
t

=
√
x
τ
, t x = τ

√
x,

dt
t

=
dτ
τ
. (52)
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Then,

S(x) = α
∫
C

e
√
x(τ+ 1

τ ) dτ
τ
. (53)

To satisfy Eq. (44) and Eq. (45) we choose the integration contour to be a closed loop
around the origin:

τ = eiθ, 0 ≤ θ ≤ 2π,
dτ
τ

= idθ, τ +
1
τ

= 2 cosθ (54)

S(x) = i α

2π∫
0

e2
√
xcosθ dθ. (55)

To satisfy the boundary condition Eq. (44), we chose α = − i
2π . Finally,

S(x) =
1

2π

π∫
−π

e2
√
xcosθ dθ, (56)

where we also shifted the integration limits for symmetry.

To find the behavior of S(x) for large x we use the Laplace method for integrals. The main
contribution to the integral Eq. (56) comes from small values of θ where cosθ ≈ 1− θ2

2 + θ4

24 .
Therefore,

S(x) ≈ e
2
√
x

2π

∞∫
−∞

e−
√
xθ2

(
1 +
√
xθ4

12

)
dθ =

e2
√
x

2
√
π
√
x

1 +
1

16
√
x

 . (57)
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Figure 2: Asymptotics Eq. (57)
(solid line) compared to the nu-
merically evaluated sum (38)
(dashed line) for 1 ≤ x ≤ 5.
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