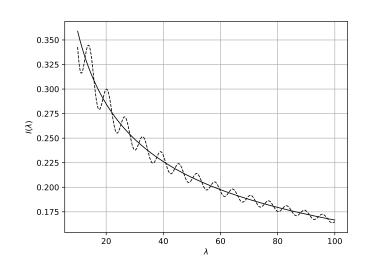
Physics 240	0							1
Name:								
Date:								
Collaborato	rs:							
Question:	1	2	3	4	5	6	Total	
Points:	20	15	15	15	15	20	100	

Instructor/grader comments:

Score:

Method of stationary phase

1. (a) (15 points) Find the leading term of the asymptotics of the following integral for $\lambda \to \infty$:

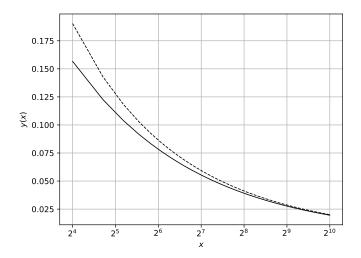

$$I(\lambda) = \int_{0}^{1} \cos(\lambda x^{p}) \, \mathrm{d}x$$

for p real and p > 1.

(b) (5 points) On the same graph plot the numerical value of the integral and your approximation for p = 3 and $10 < \lambda < 100$.

The expected graph is shown in Fig. 1.

Figure 1: Expected result in Problem 1 (solid line – asymptotics, dashed line – numerically evaluated integral).


2. (a) (10 points) Find the leading term of the asymptotics of the following integral for $\lambda \to \infty$:

$$I(\lambda) = \int_{0}^{\infty} \cos(\lambda x^{2} - x) dx.$$

(b) (5 points) On the same graph plot the numerical value of the integral and your approximation for $16 < \lambda < 1024$.

The expected graph is shown in Fig. 2.

Figure 2: Expected result in Problem 2 (solid line – asymptotics, dashed line – numerically evaluated integral).

3. (a) (10 points) Find the leading term of the asymptotics of the following integral for $\lambda \to \infty$:

$$I(\lambda) = \int_{0}^{\pi} \cos(\lambda \cos(x)) dx.$$

(b) (5 points) On the same graph plot the numerical value of the integral and your approximation for $1 < \lambda < 30$.

The expected graph is shown in Fig. 3.

Integration by parts

4. (a) (10 points) Find the leading term of the asymptotics of the following integral for $\lambda \to \infty$:

$$I(\lambda) = \int_{1}^{\infty} \cos(\lambda x^{2}) dx.$$

(b) (5 points) On the same graph plot the numerical value of the integral and your approximation for $10 < \lambda < 100$.

The expected graph is shown in Fig. 4.

Figure 3: Expected result in Problem 3 (solid line – asymptotics, dashed line – numerically evaluated integral).

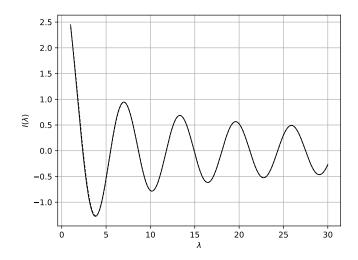
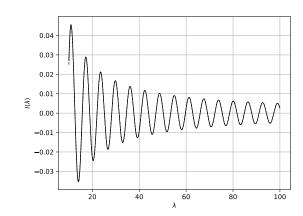
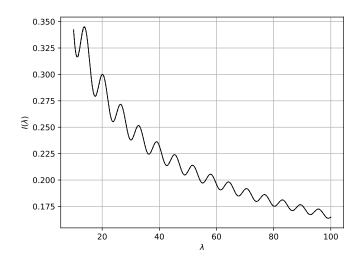



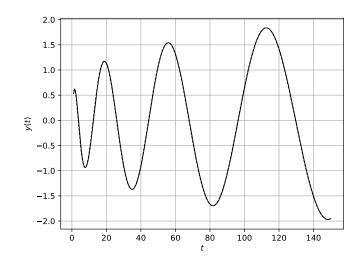
Figure 4: Expected result in Problem 4 (solid line – asymptotics, dashed line – numerically evaluated integral).



5. (a) (10 points) Improve the approximation for the integral you considered in Problem 1 by evaluating the first correction term for $\lambda \to \infty$:

$$I(\lambda) = \int_{0}^{1} \cos(\lambda x^{3}) dx.$$

(b) (5 points) On the same graph plot the numerical value of the integral and your approximation for $10 < \lambda < 100$. The expected graph is shown in Fig. 5.


Figure 5: Expected result in Problem 5 (solid line – asymptotics, dashed line – numerically evaluated integral).

- 6. (a) (15 points) Use the method of stationary phase to find the solution of the differential equation from Problem 1 HW6 for $t \gg 1$.
 - (b) (5 points) On the same graph plot the numerical value of the integral and your approximation for 1 < t < 150.

The expected graph is shown in Fig. 6.

Figure 6: Expected result in Problem 6 (solid line – asymptotics, dashed line – numerically evaluated integral).

