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Equation of motion: Consider a uniform flexible chain (or heavy rope) of length L, fixed
at the upper end and free at the lower end (see Fig. 1). We let the x axis be vertical,
measured up from the equilibrium position of the free end of the chain. Y (x, t) is the
horizontal displacement of the chain at the point with the vertical coordinate x at time t.
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Figure 1: Hanging
chain (sketched in
bold) and the coordi-
nate axis.

We assume that Y (x, t) is small compared to L. Therefore we do
not need to consider the difference between distances measured
along the chain and distances measured along the x axis, i.e. we
can neglect the terms

√
x2 +Y 2 − x ∼ Y 2

x . For the same reason we
can neglect the vertical displacement due to oscillations. We also
assume that the angle α(x) between the local direction of the chain
and X axis is small, thus

sinα ≈ tanα =
∂Y
∂x
. (1)

The horizontal component of the net force acting on a segment
of the chain of length ∆x due to the internal tension T (x) is (see
Fig. 2):

T (x+∆x)
∂Y (x+∆x)

∂x
− T (x)

∂Y (x)
∂x

≈ ∂
∂x

(
T (x)

∂Y
∂x

)
∆x (2)

Newton’s second law gives the following equation of motion:

∂
∂x

(
T (x)

∂Y
∂x

)
∆x = ρ∆x

∂2Y

∂t2
, (3)

where ρ is the chain’s linear density (mass per unit length), ρ∆x
is the mass of the segment, and ∂2Y

∂t2
is its acceleration. Cancelling

common factor ∆x in both sides of Eq. (3), we obtain:

∂
∂x

(
T (x)

∂Y
∂x

)
= ρ

∂2Y

∂t2
. (4)
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For small oscillations of the chain, when we can neglect the vertical displacement due
to oscillations, the tension T (x) is the same as for the chain at rest, i.e. the tension at the
point with the vertical coordinate x equals to the weight of the part of the chain below x.
Therefore,

T = ρgx, (5)

where g is the acceleration of gravity.
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Figure 2: Forces acting on the element of the chain.

The chain is fixed at the top, therefore

Y (L,t) = 0. (6)

The displacement of the bottom of the chain remain finite at all times, thus

|Y (0, t)| <∞. (7)

Separation of variables: We solve the partial differential equation Eq. (3) with the
boundary conditions Eqs. (6),(7) separating variables, i.e. assuming that

Y (x, t) = y(x)u(t). (8)

Substituting Eq. (8) into Eq. (4), we obtain:

u(t)
d

dx

(
T (x)

dy
dx

)
= ρy(x)

d2u

dt2
, (9)

or,
1
y(x)

d
dx

(
T (x)

dy
dx

)
= ρ

1
u(t)

d2u

dt2
. (10)

The right hand side of Eq. (10) is a function of time t. The left hand side is a function of x.
The two sides can be equal at all times and coordinates only if they both are equal to the
same constant.
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As we see shortly, this constant must be real and negative. Indeed, the mechanical system
described by Eq. (3) is conservative. Therefore, u(t) cannot grow without a limit or decay
to zero. The permissible solutions are only possible for real negative separation constants.

Denoting the constant by −ω2, we get the following equations:

1
u(t)

d2u

dt2
= −ω2, (11)

1
y(x)

d
dx

(
T (x)

dy
dx

)
= −ρω2. (12)

Equation Eq. (11) can be easily solved:

d2u

dt2
+ω2u(t) = 0, (13)

and
u(t) = Re

(
C0e

iωt
)

= Acos(ωt) +Bsin(ωt), (14)

where A and B are real, and C is a complex integration constants. We see that ω is the
frequency of the chain’s oscillations.

The equation for the amplitude of the oscillations, y(x), is:

d
dx

(
T (x)

dy
dx

)
+ ρω2 y(x) = 0. (15)

Using the expression for the chain tension, Eq. (5), we obtain:

xy′′ + y′ +
ω2

g
y = 0. (16)

The boundary conditions for Eq. (16) are

y(0) = 0, |y(L)| <∞. (17)
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