COURSE CALENDAR

MATHEMATICAL METHODS FOR THE PHYSICAL SCIENCES

Fall semester 2020

https://www.phys.uconn.edu/~rozman/Courses/P2400_20F/

Last modified: December 8, 2020

The chapter, section, and the page numbers below refer to the following editions of the course textbooks: **HC** – Hung Cheng, *Advanced Analytic Methods in Applied Mathematics, Science, and Engineering*, Luban Press, 2006; **LJ** – Lorella M. Jones, *Introduction to Mathematical Methods of Physics*, Benjamin/Cummings, 1979

Monday	Wednesday
Aug 31st Lecture 1	Sep 2nd Lecture 2
Course logistics	Course overview, I. Typical problems and their examples:
	(a) products – Birthday paradox (handout); sums – energy
	of a coulomb chain (handout)
	Computer algebra systems: a very short introduction to
	Mathematica (handout)
	Homework 1 assigned: due 9/9/2020
Sep 7th	Sep 9th Lecture 3
Labor day – no classes	Course overview, II. Typical problems and their examples:
	(a) differential equations – oscillations of a hanging chain
	(handout); integrals – Kelvin wake (handout)
Sep 14th Lecture 4	Sep 16th Lecture 5
Euler's formula (handout)	Beta function, $B(x, y)$
Gamma function, $\Gamma(x)$; recurrence relation for $\Gamma(x)$; Gamma	Gamma function and n-dimensional sphere (handout)
function and factorial	Homework 2 assigned: due $9/23/2020$
Gaussian integrals	
Sep 21st Lecture 6	Sep 23rd Lecture 7
Differentiating under the integral sign (handout)	Differentiating under the integral sign (handout)
1d potential motion (handout),	1d potential motion (handout),
Duplication formula for Gamma function (handout)	Homework 3 assigned: due 9/30/2020
More Gaussian-type integrals (handout)	

Monday	Wednesday
Sep 28th Lecture 8	Sep 30th Lecture 9
Complex numbers; coordinate and polar form; powers of complex numbers; logarithms of complex numbers	Midterm I: take-home, due Oct 7, 2020
Complex functions, real and imaginary parts of complex	Analytic functions. Integral of a complex function.
functions, $f(z) = u(x, y) + iv(x, y)$. Derivative of a complex function Cauchy-Riemann conditions HC np. 35–47	Cauchy's integral theorem (handout).
Tunction. Cauchy Riemann conditions. The, pp. 55-47.	Applications of Cauchy's theorem (handout)
Oct 5th Lecture 10	Oct 7th Lecture 11
Liouville theorem.	Taylor and Laurent series. HC, Ch. 2, pp. 54–57.
Cauchy's integral formula. HC, Ch. 2, pp. 51–53.	Poles and residues. HC, Ch. 2, pp. 58–59.
	Homework 4 assigned: due 10/14/2020
Oct 12th Lecture 12	Oct 14th Lecture 13
Method of residues, I, handout	Method of residues, II. Jordan's lemma (handout).
	Homework 5 assigned: due 10/21/2020
Oct 19th Lecture 14	Oct 21st Lecture 15
Method of residues, III. Advanced choices of integration	Laplace method for differential equations (handout).
contours.	Homework 6 assigned: due 11/4/2020
Oct 26th Lecture 16	Oct 28th Lecture 17
Laplace method for differential equations, II (handout).	Laplace method for integrals, II (handout).
Laplace method for integrals (handout).	
Nov 2nd Lecture 18	Nov 4th Lecture 19
	The method of stationary phase. (handout).
Midterm II: take-home, due Nov 9, 2020	Homework 7 assigned: due 11/18/2020
Laplace method for integrals, III. (handout).	
HW6 review	
Nov 9th Lecture 20	Nov 11th Lecture 21
The method of stationary phase, if. (nandout).	Integration by parts. (handout).
Nov 16th Locture 22	Nov 18th
Regular perturbation theory (handout).	Singular perturbation theory (handout).
regarat portaroation aroor) (maraoat).	
Nov 23rd	Nov 25th
Thanksgiving recess – No classes	Thanksgiving recess – No classes
Nov 30th	Dec 2nd Lecture 24
Class cancelled – video-conferencing problems	Midterm III: take-home, due Nov 9, 2020
	Singular perturbation theory, II. Boundary layers. (handout).

Monday	Wednesday
Dec 7th Lecture 2	5 Dec 9th
Course Review	Reading days – No classes Office hours during the regular class times
Dec 14th	Dec 16th
Week of Finals	Week of Finals