
1 Introduction

The goal of this course is to give a modern introduction to mathematical methods for
solving hard mathematics problems that arise in the sciences — physical, biological
and social. The toolbox of applied mathematics has changed dramatically over the past
fifteen years.

There are two major factors that have contributed to this change. First, the dra-
matic increases in inexpensive computational speed have made large scale computation
much more prevalent. Computers are now sufficiently fast that algorithms with minimal
sophistication can perform once unthinkably large computations on a laptop PC. The
consequence of this is a dramatic increase in numerical computations in the scientific
literature; it is an understatement to say that most theoretical papers in the engineering
sciences contain numerical computations. Even in the biological sciences it is becoming
more and more fashionable to supplement traditional arguments with simulations of one
kind or another.

The second major change in the toolbox of applied mathematics is the advent of
fast, reliable and easy to use packages for routine numerical and symbolic computations
(Matlab, Mathematica and Maple). These packages have cut the time for writing small
scale computer codes dramatically, and likewise have dramatically increased the size and
accuracy of analytic computations that can be carried out.

Additionally, they have, as it were, lowered the bar of required knowledge for carrying
out numerical calculations. Armed with knowledge of how to run a computer package,
it is possible to carry out numerical calculations solving for example a set of coupled
highly nonlinear partial differential equations. Although the computer will readily spit
out answers, the question then is what do these answers mean?

1.1 Computer Graphics and Mathematical Models

The most dramatic version of this question is to ask what is the difference between
the numerical solution to a mathematical model, and a computer graphics animation
of the same phenomenon. A computer graphics animation of fire aims to reproduce the
salient features of the combustion process and visualize it so that it looks as realistic
as possible. But a combustion scientist simulating this same fire does not care if the
solution visually looks like fire: she is interested instead in whether the chemical and
transport mechanisms are reliably represented, in order to refine understanding of why
and how burning occurs. Such a scientist will be more interested in understanding for
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Figure 1.1. A real picture of fire (left, iStockphoto.com) compared with an animation of fire
(right, quaife.us).

example the nature of the flame front — what is burning; which chemicals are leading
to the color variation; what sets the characteristic scale of the flame, and of the small
features in the flame — than in making a simulation that visibly looks like fire.

Somewhat remarkably, a computer graphicist trying to simulate fire might use exactly
the same mathematical structure as the scientist, despite their completely different ends.
Modern algorithms for computer graphics often solve nonlinear equations motivated by
physics.

Another famous example comes from the wonderful movie Finding Nemo. The motions
of the fishes in this movie greatly resemble those of real fishes. To achieve this the
animators no doubt needed to learn and study fish physiology. However, the actual
mechanisms of fish locomotion are quite different than those underlying the animation.
Scientists who try to study the mechanisms for fish locomotion also carry out numerical
simulations of the motion; instead of focusing on their visual appeal they instead try to
create as faithful a representation of the motion as possible, in order to discover how it
works.

Whereas a mathematical model aims to understand something animation aims to
emulate it. The difference is easy to ascertain when going to the movies. But suppose
in the course of your research into some phenomenon you write a computer program to
simulate it. You worked hard on your simulation and are proud of it. Is your simulation
computer graphics, or does it actually teach you something about the phenomenon in
question. And how do you know?

1.2 Calculating while computing

The answer to this question depends both on the model that you have formulated,
and the way that you have analyzed it. Creating good models is in itself a fascinating
subject, but this is not the topic of the present course. The topic of this course is how to
analyze the output of a computer simulation to understand why the output is what it is.
If you solve a horribly complicated mathematics problem, whether a nonlinear partial
differential equations, a set of coupled differential equations, the eigenvalues of a large
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matrix, etc. it is the contention of this course that you should nonetheless be able to
understand in explicit terms why the solution is the way that it is. It may be difficult, it
may require some approximation, but our contention is both that it is possible in general
to do this, and moreover that without doing it you do not really understand what you
have done.

Indeed, in recent years, an emerging trend is that while there is more and more inter-
est in inventing algorithms for doing fast computation, or doing them on the computer
architectures that have emerged, etc, there is correspondingly less interest in both learn-
ing and teaching analytical methods. After all, why should one learn how to carry out
a difficult and possibly tedious approximate analytic calculation when there exist all
purpose computer programs for solving all problems?

Our answer to this question is that you cannot understand the output of a computer
simulation, however sophisticated it may seem, without some analysis to back up the
calculation. You must convince yourself that the calculation is correct, and moreover
you must understand its essential feature. It is not enough to say ”Look, my computer
simulation looks like the ocean.” You need to explain why it looks like the ocean, which
numbers you put into the computer mapped into which numbers characteristic of the
ocean, etc. Without being able to do this you simply aren’t doing good science and
additionally you have little basis to explain why you believe the answer that the computer
simulation has given.

Our aim therefore is to teach, within a broad suite of examples, how computer sim-
ulations and analytical calculations can be effectively combined. In this course, we will
begin with problems that are simple–polynomial equations and first order differential
equations – and slowly march our way towards the study nonlinear partial differential
equations. We will show that a set of simple ideas provides a framework for developing
an understanding all of these problems.

1.3 What is an analytical solution?

By and large, the analytic computations that we will emphasize in these notes are quite
different than those that are usually taught in mathematical methods text books. Our
focus will be on introducing methods which are structurally stable, in the sense that they
work equally well when the mathematics problem is changed. This is opposite to the type
of understanding that is usually taught. For example, in calculus, students are taught
how to carry out a series of integrals which can be carried out exactly. For example,
every calculus student learns that

∫
1

1 + x2
dx = tan−1(x), (1.1)

so that

I1 =

∫
∞

0

1

1 + x2
dx =

π

2
. (1.2)
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Calculus students pride themselves on learning these formulas; but in truth we must
admit that they only have content if you happen to know how to compute tan−1(x),
which is after all defined by the integral!

To drive this point home, here is another example of an integral that has long been
taught to (advanced) calculus students, the so-called elliptic integral.

E(x; k) =

∫
x

0

√
1− k2t2
√
1− t2

dt. (1.3)

Probably many of you have never heard of the elliptic integral. But in many circles
people still say that a problem has an analytical solution if it can be reduced to elliptic
integrals!

Historically, this view of what it meant to derive an analytical solution to a problem
was quite a reasonable one. Since computers for carrying out direct solutions to math-
ematics problems did not exist, the only way to solve a problem was to reduce it to
a problem whose solution had already been tabulated numerically. Tables of functions
(like the arctangent, the elliptic integral, the logarithm, and whatnot) were collected
together–and indeed copies of these tables were included in the back of mathematics
textbooks. For example, the classical two-volume series Methods of Theoretical Physics,
Morse and Feshbach included tables of the following functions:

1. Trigonometric and Hyperbolic Functions

2. Hyperbolic tangent of complex numbers

3. Logarithms and Inverse Hyperbolic functions

4. Spherical Harmonic Functions

5. Legendre functions for large arguments

6. Legendre functions for imaginary arguments

7. Legendre functions of half integral degree

8. Bessel functions for cylindrical coordinates

9. hyperbolic bessel functions

10. spherical bessel functions

11. Legendre functions in spherical coordinates

12. Cylindrical bessel functions

13. Mathieu functions

In 1953 when this book was published, learning the properties of these functions and
how to reduce an arbitrary problem you are confronted with to a form that one of these
functions can be used was the critical skill required to do calculations. In contrast, most
of you have never heard of these functions and will have no need for them at any point
in your life. Today, computer calculations have completely replaced the use of tables of
special functions and hence the analytical manipulations that accompany their use.
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So what does it mean to develop an analytical understanding to a mathematics prob-
lem? Leaving aside its outdated pragmatic nature (and the fact that no human being
can compute elliptic integrals in their head), the main problem with the historical point
of view is that it obscures why a value of an integral has the value that it does. Remem-
bering the name of a function does not give any intuition about its properties — why it
behaves one way and not another.

For example, what if we perturb our nice arctangent integral to be:

I2(a) =

∫ 100

0

1

1 + x2 + ax7
dx (1.4)

There is no special function with this name. Thus within the current system of math- Maybe you would like to

name it after yourself!ematics education there is only one way to solve it — with a computer. A simple com-
putation with Matlab yields that I2(a = 0.1) ≈ 1.03. Although this is a very efficient
way to solve the problem it does not lead to any real understanding of why the integral
has the number that it does. But on the other hand, we note that I2(a = 0.1) is close to Moreover how do you

know that the answer is

correct?
π/2 (≈ 1.57). Is it an accident or is it a coincidence? Under what circumstances can the
integral have a much different value? For example, examining the difference between I2
and I1, it seems evident that I2(a = 0) should be very close to I1. Indeed, a numerical
computation shows that I2(0) − π/2 ≈ −0.01. What determines the magnitude of this
difference? What determines the rate at which I2(a) → I1 as a → 0?

The goal of this course is to develop methods and ideas for answering this type of
question in the context of the variety of different problems that arise in applications.
The ideas we will discuss are weighted roughly equally between learning the mathematics
and learning how to use a computer to expose and discover the mathematics. Whereas
in 1953 students asking the question ”how does I2(a) depend on a?” were forced to
rely solely on their wits, today computers can be used to help prod one’s wits into
understanding a problem.

It is our belief that developing skill in thinking about mathematics this way is cru-
cial for educating modern students in applying mathematical and numerical methods
to the sciences. Despite the relative ease of producing plausible answers to hard prob-
lems, learning numerical computation by itself is not enough. First, without having any
understanding of why a problem has the answer that it does, one does not understand
how the answer will change when the problem changes. Simply producing a graph with
numbers to be compared to a phenomenon does not lead to any understanding of why
the phenomenon behaves as it does. Second, without having an understanding of the
answer, it is extremely difficult to determine when the numerical results are erroneous.
A numerical method can be erroneous for two different reasons: either the numerical
method can not solve the intended equation accurately enough, or the equation itself
could be inaccurate, due to unjustified approximation. We will illustrate herein that
both of these situations can be quite subtle; only with careful understanding can it be
debugged and understood. Finally, an understanding of why the answer has the value
that it does allows one to design numerical algorithms for much more difficult problems
than would be possible if such an understanding did not exist.
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