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There is an immediate generalization of the Laplace integrals∫ b

a
f (t)exφ(t) dt (1)

which we obtain by allowing the function φ(t) in Eq. (1) to be complex. We may assume that f (t)
is real; if it were complex, f (t) could be decomposed into a sum of its real and imaginary parts.
However, allowing φ(t) to be complex poses nontrivial problems. We consider the special case in
which φ(t) is pure imaginary: φ(t) = iψ(t) where ψ(t) is real. The resulting integral

I (x) =
∫ b

a
f (t)eixψ(t) dt (2)

with f (t), ψ(t), a, b, x all real is called a generalized Fourier integral. When ψ(t) = t, I (x) is an
ordinary Fourier integral.

The method of stationary phase gives the leading asymptotic behavior of generalized Fourier
integrals having stationary points, ψ′ = 0. This method is similar to Laplace’s method in that the
leading contribution to I (x) comes from a small interval surrounding the stationary points of ψ.

Recall that
∞∫

−∞

e±iu2
du =

√
π e±i π4 ,

∞∫
−∞

e±iλu2
du =

√
π

λ
e±i π4 . (3)

Example 1. Find the leading term of the asymptotics of the following integral for λ → ∞:

I (λ) =

4∫
−3

cos
(
λ sinh2(x)

) √
1 + x2 dx. (4)

Since only small |x |, such that |x | ∼ 1√
λ
� 1 are important,

sinh x ∼ x, (5)
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Figure 1: The graphs of the os-
cillating factor, cos

(
λ sinh2(x)

)
in

Eq. (4), for λ = 1, 4.
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cos
(
λ sinh2(x)

)
∼ cos

(
λx2

)
= Re eiλx2

(6)√
1 + x2 ∼ 1. (7)

I (λ) ∼ Re

4∫
−3

eiλx2
dx ∼ Re

∞∫
−∞

eiλx2
dx. (8)

New integration variable,

u2 = λx2 −→ x2 =
u2

λ
−→ x =

u
√
λ

−→ dx =
1
√
λ

du. (9)

I (λ) ∼ Re
1
√
λ

∞∫
−∞

eiu2
du

︸     ︷︷     ︸
√
πei

π
4

=

√
π

λ
Re

(
ei π4

)︸    ︷︷    ︸
1√
2

=

√
π

2λ
(10)
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Figure 2: Asymptotics Eq. (10)
(solid line) compared to numer-
ically evaluated Eq. (4) (dashed
line) for 2 ≤ λ ≤ 12.
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Example 2. Find the leading term of the asymptotics of the Bessel function J0(x) for x → ∞:

J0(x) =
1
π

π
2∫

− π
2

cos (x cos θ) dθ (11)

Bessel function J0(x) is a solution of the following second order linear differential equation:

x y′′ + y′ + x y = 0. (12)

Let’s show first that Eq. (11) is indeed a solution of Eq. (12).

d
dx

J0(x) = −
1
π

π
2∫

− π
2

sin (x cos θ) cos θ dθ, (13)

d2

dx2 J0(x) = −
1
π

π
2∫

− π
2

cos (x cos θ) cos2 θ dθ. (14)
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x
(

d2

dx2 J0(x) + J0(x)
)
=

x
π

π
2∫

− π
2

(
1 − cos2 θ

)
cos (x cos θ) dθ

=
x
π

π
2∫

− π
2

sin2 θ cos (x cos θ) dθ

= −
1
π

π
2∫

− π
2

sin θ cos (x cos θ) d(x cos θ)

= −
1
π

π
2∫

− π
2

sin θ d (sin (x cos θ))

= −
1
π

sin θ sin (x cos θ)
�����

π
2

− π
2

+
1
π

π
2∫

− π
2

sin (x cos θ) cos θ dθ

= −
d

dx
J0(x), (15)

which is indeed in agreement with Eq. (12).

Figure 3: Asymptotics Eq. (18)
(solid line) compared to numeri-
cally evaluated Eq. (11) (dashed
line) for 1 ≤ x ≤ 20.

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0 2 4 6 8 10 12 14 16 18 20

J
0
(λ
)

λ

J0(λ) =
1
π

π/2∫
−π/2

cos (λ cos(x)) dx

Let’s rewrite integral Eq. (11) in the exponential form:

J0(x) =
1
π

Re

π
2∫

− π
2

eix cos θdθ. (16)

The stationary point of the phase factor is at θ = 0. Only small θ contribute to the integral. Therefore.

cos θ ≈ 1 −
θ2

2
. (17)
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J0(x) ∼
1
π

Re eix

π
2∫

− π
2

e−i xθ
2

2 dθ ∼
1
π

√
2
x

Re eix

∞∫
−∞

e−i x2 θ
2

d
(√

x
2
θ

)

=
1
π

√
2
x

Re
(
eix √πe−i π4

)
=

√
2
πx

cos
(
x −

π

4

)
(18)

Integration by parts

If ψ(t) in the integral Eq. (2) has no stationary point, ψ′(t) = 0, in the integration range [a,b], the
method of stationary phase is not applicable. In this case a simple integration by parts gives the
leading asymptotic behaviour.

I (x) =
∫ b

a
f (t)eixψ(t) dt =

1
ix

∫ b

a

f (t)
ψ′(t)

d
(
eixψ(t)

)
=

1
ix

f (t)
ψ′(t)

eixψ(t)
�����

b

a
−

1
ix

∫ b

a

d
dt

(
f (t)
ψ′(t)

)
eixψ(t) dt. (19)

The integral on the right vanishes more rapidly than 1/x (Riemann–Lebesgue lemma). Therefore,

I (x) ∼
1
ix

f (t)
ψ′(t)

eixψ(t)
�����

b

a
(20)

as x → ∞.

Example 3.

I (x) =
∫ 1

0

cos(xt)
1 + t

dt = Re
∫ 1

0

eixt

1 + t
dt. (21)

Integrating the last integral by parts, we obtain∫ 1

0

eixt

1 + t
dt =

1
ix

∫ 1

0

1
1 + t

d
(
eixt

)
=

1
ix

(
eix

2
− 1

)
+

1
ix

∫ 1

0

eixt

(1 + t)2 dt. (22)

The last term on the right is ∼ x−2 (see below), therefore the leading term in the approximation of
Eq. (21) when x → ∞ is

I (x) ≈ Re
{

1
ix

(
eix

2
− 1

)}
=

sin(x)
2x

. (23)

We can continue the integration by parts of the integral in the right hand side of Eq. (22):∫ 1

0

eixt

(1 + t)2 dt =
1
ix

∫ 1

0

1
(1 + t)2 d

(
eixt

)
=

1
ix

(
eix

4
− 1

)
+

2
ix

∫ 1

0

eixt

(1 + t)3 dt. (24)

Thus, ∫ 1

0

eixt

1 + t
dt =

1
ix

(
eix

2
− 1

)
−

1
x2

(
eix

4
− 1

)
−

2
x2

∫ 1

0

eixt

(1 + t)3 dt. (25)
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The last term in the right hand side of Eq. (25) is of order x−3 and can be neglected, therefore

I (x) ≈ Re
{

1
ix

(
eix

2
− 1

)
−

1
x2

(
eix

4
− 1

)}
=

sin(x)
2x

−
1
x2

(
cos(x)

4
− 1

)
(26)

Figure 4: Asymptotics Eq. (23)
(dashed line) and Eq. (26) (dot-
ted line) compared to numerically
evaluated Eq. (21) (solid line) for
8 ≤ x ≤ 20.
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