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Method of stationary phase
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There is an immediate generalization of the Laplace integrals

b
f £ dr ()

which we obtain by allowing the function ¢(¢) in Eq. (1) to be complex. We may assume that f(¢)
is real; if it were complex, f(¢) could be decomposed into a sum of its real and imaginary parts.
However, allowing ¢(t) to be complex poses nontrivial problems. We consider the special case in
which ¢(7) is pure imaginary: ¢(¢) = iy (¢) where ¥(¢) is real. The resulting integral

b
I(x) = f F()e™ @ dr ()

with f(¢), ¥ (t), a, b, x all real is called a generalized Fourier integral. When ¢ (t) = ¢, I(x) is an
ordinary Fourier integral.

The method of stationary phase gives the leading asymptotic behavior of generalized Fourier
integrals having stationary points, ¢’ = 0. This method is similar to Laplace’s method in that the
leading contribution to /(x) comes from a small interval surrounding the stationary points of ¢.

feiiuz du = \/Eeii%’ feii/luz du = \ , % eii%, (3)

Example 1. Find the leading term of the asymptotics of the following integral for 4 — oo:

Recall that

4

I(/l):fcos (Asinh?(x)) V1 + x2dx. 4)

-3

L

va

Since only small |x|, such that | x| ~ < 1 are important,

sinh x ~ x, (&)
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Figure 1: The graphs of the os- -2.0 -1.0 0.0 1.0
cillating factor, cos (/l sinh? (x)) in x
Eq. (4), for 1 =1, 4. 1.0
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cos (/l sinhz(x)) ~ COS (/UZ) — Re o

1+x2~1.
4 (o)
I(A) ~ Ref ¢ dx ~ Ref ¢ dx.
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New integration variable,
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4
I(\) = [ cos ()\ sinhz(:t)) V1+a?de
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Figure 2: Asymptotics Eq. (10) 0.80 £

(solid line) compared to numer- _ 0.70 |
ically evaluated Eq. (4) (dashed <

line) for 2 < 4 < 12. LT
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Example 2. Find the leading term of the asymptotics of the Bessel function Jy(x) for x — oo:
1
Jo(x) = — f cos (xcosd) df (11)
T

(ST

Bessel function Jy(x) is a solution of the following second order linear differential equation:
xy"+y +xy=0. (12)

Let’s show first that Eq. (11) is indeed a solution of Eq. (12).

z

d 1
—Jo(x) = —= f sin (x cos §) cos 6 6, (13)
dx T
-3
a2 1 )
—Jo(x) = —— | cos(xcos8)cos”ddb. (14)
dx? n
-7
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x @Jo(x)+fo(x)) a

(1 — cos? 6) cos (x cos6) do
n

|
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d f sin? @ cos (xcos @) do
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DN

x

1
—— f sin @ cos (x cos @) d(x cos8)
T
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N

1
__ f sin@d (sin (x cos 6))
b

[SIE]

z

z
2

1 1
——sinf sin(xcosf)| + — f sin (x cos §) cos 8 do
T T

_z
2

ST

d
) (15)

which is indeed in agreement with Eq. (12).

w/2

Jo(N) =L | cos(Acos(z)) dz
0.80 /L
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Figure 3: Asymptotics Eq. (18)
(solid line) compared to numeri- ~ 020
cally evaluated Eq. (11) (dashed =

line) for 1 < x < 20. 000y
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Let’s rewrite integral Eq. (11) in the exponential form:
1 ixcosf
Jo(x)=—Re | e dé. (16)
m

Vs

2
The stationary point of the phase factor is at & = 0. Only small 6 contribute to the integral. Therefore.
92

O~1—-—. 17
cos 3 (17)
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(e

(o)

1 1 2
Jo(x) ~ —Ree™ _’_d6~—\/7Ree fe_’ 30% 4 (\/76)
n n N x

= % \/gRe (eix \/Ee_i%) = \/gcos (x— %) (18)

Integration by parts

N|>I

If ¥ (¢) in the integral Eq. (2) has no stationary point, ¢’ (¢) = 0, in the integration range [a, b], the
method of stationary phase is not applicable. In this case a simple integration by parts gives the
leading asymptotic behaviour.

f(t) i ()
I(x) = f ()e™ " dr = v
/ ZoR
b
- L —f,(t) A i f ( S0 ) e gt (19)
ix ' (1) a XJa w'(1)
The integral on the right vanishes more rapidly than 1/x (Riemann—-Lebesgue lemma). Therefore,
b
I(x) ~ l & e (20)
ix y'(t) a
as x — oo.
Example 3.
1 1 ixt
t
I(x) = f COSA) 4/ - Re f ‘. @1)
0 1+1¢ 0 1+1¢
Integrating the last integral by parts, we obtain
1 ixt 1 ix 1 ixt
1 1 - 1 1
f Cdr=— —d(e”“):_—(e——l)+,—f ‘. (22)
o L+t ix Jo 1+¢ ix\ 2 ix Jo (1+1)
The last term on the right is ~ x~2 (see below), therefore the leading term in the approximation of
Eq. (21) when x — oo is
1 ix :
I(x) ~Red = (& —p)} = S0 (23)
ix\ 2 2x

We can continue the integration by parts of the integral in the right hand side of Eq. (22):

1 ixt 1 ix 1 ixt
e 1 1 . 1 [e 2 e
——dt = — dle)=—[—-1 f—dt. 24
fo (1+1)? ixfo e ) ix(4 ) o (1+1)3 &4

1 ixt ix ix 1 ixt
e 1 (e 1 (e 2 e
dd=—|—-1]-—=|—-1]-— —dr. 25
j(; 1+¢ ix(2 ) x2(4 ) xzf(; (1+1)3 (23)
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The last term in the right hand side of Eq. (25) is of order x~3 and can be neglected, therefore

N 1 [e* 1 (e _sin(x) 1 fcos(x)
I(x)~Re{§ (7—1)—;(T—1)} = —2x xz (—4 1) (26)
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