Name:	

Date: _____

Question:	1	2	3	4	5	Total
Points:	5	15	30	5	5	60
Score:						

Frullani's formula

1. (5 points) Evaluate the following integral:

$$I(a,b) = \int_{0}^{\infty} \frac{1}{x} \left(\frac{1}{(1+ax)^{2}} - \frac{1}{(1+bx)^{2}} \right) \, \mathrm{d}x,$$

where a, b > 0.

Answer: $I(a,b) = \ln \frac{b}{a}$

Leibniz' rule

2. (15 points) Find the positive value of x that maximizes the value of the following integral

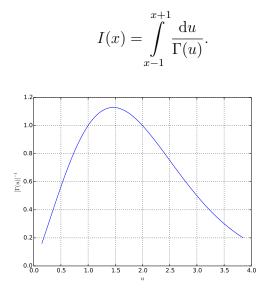


Figure 1: Problem 2: graph of $1/\Gamma(u)$.

Hints: Find the derivative of I(x). What is its value at the maximum of I(x)? Simplify the equation that you obtained using the relation $\Gamma(x + 1) = x\Gamma(x)$. Solve the equation and select the correct solution.

Answer: $x = \frac{1+\sqrt{5}}{2}$

Differentiation with respect to a parameter

3. (30 points) Evaluate the following integral

$$I = \int_{0}^{\infty} e^{-\left(x^2 + \frac{1}{x^2}\right)} \,\mathrm{d}x$$

Hints: consider the integral $I(\alpha) = \int_0^\infty e^{-(x^2 + \frac{\alpha}{x^2})} dx$. What you need is I(1) and what you know is I(0). Take the derivative of $I(\alpha)$ and transform the integral by introducing the new integration variable $u = \frac{\sqrt{\alpha}}{x}$. Solve the differential equation you thus obtained.

Answer: $I = \frac{\sqrt{\pi}}{2}e^{-2}$

Computer algebra

4. (5 points) Use a computer algebra system to expand the following function, f(x), into a power series about x = 0. Keep the terms up to $\sim x^3$.

$$f(x) = e^{\sqrt{\sin(x)}}$$

Print your mathematica session and attach the printout to the rest of your homework.

5. (5 points) Use a computer algebra system to evaluate the following indefinite integral:

$$\int \frac{x}{1+\sin x} \,\mathrm{d}x$$

Print your mathematica session and attach the printout to the rest of your homework.