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The Gamma function meets physics1

In the following example we see how the Gamma functions appears in a problem involving the
one-dimensional motion of a point mass under the influence of a potential force with the following
potential:

V (x) = αxp, (1)

where x is the coordinate of the particle.

The case p = 2 corresponds to the motion of a harmonic oscillator, p = −1 describes the motion of
a charge in a coulomb field, p = −3 describes dipole-dipole interaction, etc. Our analysis is not
restricted to particular values of p. We assume that the force on the mass is directed toward the
origin, x = 0, i.e. that αp > 0.

Specifically, a mass m is held at rest at a point with the coordinate x = x0. We assume that x0 > 0.
The mass is allowed to move at time t = 0. At what time, T , does the mass arrive at the origin?

We consider separately the cases of positive and negative p.

1 V (x) = αxp for p > 0

Conservation of energy gives the velocity of the mass in terms of its position:

mẋ2

2
+ αxp = αxp0, (2)

where the term on the right is the initial energy of the point mass; ẋ denotes the time derivative of x,
i.e. the velocity of the mass.

ẋ2 =
2α

m
(xp0 − xp) , (3)

or
dx

dt
= −

√
2αxp0
m

[
1−

(
x

x0

)p ] 1
2

. (4)

The sign on the right is chosen such that the velocity is directed toward the attracting origin.

Separating variables in the ordinary differential equation Eq. (4),

−
[
1−

(
x

x0

)p ]− 1
2

dx =

√
2αxp0
m

dt. (5)

Integrating both sides of Eq. (5), on the left with respect to x, from x0 to 0, and on the right with
respect to t, from 0 to T , obtain:

−
0∫

x0

[
1−

(
x

x0

)p ]− 1
2

dx =

√
2αxp0
m

T. (6)

1The title borrowed from P. Nahin, Inside Interesting Integrals, Springer, 2015.
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In the integral on the left we swap the limits of integration to compensate the minus sign. Next we
introduce the new integration variable,

u =

(
x

x0

)p

, 0 ≤ u ≤ 1, x = x0u
1
p , dx =

x0
p
u

1
p
−1du. (7)

Tp =
1

p

√
m

2αxp−20

1∫
0

u
1
p
−1 (1− u)−

1
2 du =

1

p

√
m

2αxp−20

B

(
1

p
,
1

2

)
, (8)

where B(. . .) is the Beta function, or

Tp =
1

p

√
m

2αxp−20

Γ
(

1
p

)
Γ
(
1
2

)
Γ
(

1
p

+ 1
2

) =
1

p

√
mπ

2αxp−20

Γ
(

1
p

)
Γ
(

1
p

+ 1
2

) . (9)

As a quick check of the result Eq. (9) consider the motion of a harmonic oscillator, p = 2:

T2 =
1

2

√
mπ

2α

Γ
(
1
2

)
Γ(1)

=
π

2

√
m

2α
, (10)

which is indeed one quarter of the period of oscillations and doesn’t depend upon x0.

2 V (x) = αxp for p < 0

Conservation of energy gives the velocity of the mass in terms of its position:

mẋ2

2
+ αxp = αxp0, (11)

where the term on the right is the initial energy of the point mass; ẋ denotes the time derivative of x,
i.e. the velocity of the mass.

ẋ2 =
2|α|
m

(xp − xp0) =
2|α|
m

(
1

x|p|
− 1

x
|p|
0

)
, (12)

or
dx

dt
= −

√
2|α|
m

x−|p|/2

[
1−

(
x

x0

)|p| ] 1
2

. (13)

The sign on the right is chosen such that the velocity is directed toward the attracting origin.

Separating variables in the ordinary differential equation Eq. (13),

− x|p|/2
[

1−
(
x

x0

)|p| ]− 1
2

dx =

√
2|α|
m

dt. (14)
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Integrating both sides of Eq. (5), on the left with respect to x, from x0 to 0, and on the right with
respect to t, from 0 to T , obtain:

−
0∫

x0

x|p|/2

[
1−

(
x

x0

)|p| ]− 1
2

dx =

√
2|α|
m

T. (15)

In the integral on the left we swap the limits of integration to compensate the minus sign. Next we
introduce the new integration variable,

u =

(
x

x0

)|p|
, 0 ≤ u ≤ 1, x = x0u

1
|p| , dx =

x0
|p|
u

1
|p|−1du. (16)

Tp =
1

|p|

√
mx

|p|+2
0

2|α|

1∫
0

u
1
|p|+

1
2
−1 (1− u)

1
2
−1 du =

1

|p|

√
mx

|p|+2
0

2|α|
B

(
1

|p|
+

1

2
,
1

2

)
, (17)

where B(. . .) is the Beta function, or

Tp =
1

|p|

√
m

2|α|xp−20

Γ
(

1
|p| + 1

2

)
Γ
(
1
2

)
Γ
(

1
|p| + 1

) =
1

|p|

√
mπ

2|α|xp−20

Γ
(

1
|p| + 1

2

)
Γ
(

1
|p| + 1

) . (18)
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