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1 Oscillator with nonlinear friction

Let’s consider the following second order non-linear differential equation

d2x
dt2 + ε

(
dx
dt

)3

+ x = 0, ε > 0 (1)

with the initial conditions
x(0) = 1., ẋ(0) = 0. (2)

The equation describes a non-liner oscillator with the “friction” force that is proportional to the
third power of the velocity. The parameter ε is a positive parameter that describes the rate of the
energy loss in the system. Equation (1) has no exact analytic solutions, therefore below we compare
our analytics with the results of numerical calculations.

1.1 Numerical integration

To solve Eq. (1) numerically, we introduce a new dependent variable, y = ẋ and rewrite Eq. (1) as a
system of two first order differential equations for two unknown x(t) and y (t),




dx
dt
= y,

dy
dt
= −εy3 − x,

(3)

A typical result of the numerical integration of Eqs. (3) is presented in Fig. 1.

1.2 Regular perturbation theory for nonlinear oscillator

ẍ + x = −ε ẋ3. (4)

A perturbative solution of this equation is obtained by expanding x(t) as a power series in ε:

x = x0 + εx1 + ε
2x2 + . . . , (5)
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Figure 1: Typical solution of Eq. (1) for small values of ε; ε = 0.2 (solid line). The approximation
Eq. (35) is also shown (dashed line).

where x0(0) = 1, ẋ0(0) = 0, and xn(0) = 0, ẋn(0) = 0 for n ≥ 1. Substituting Eq. (5) into Eq. (4)
and equating coefficients of like powers of ε gives a sequence of linear differential equations of
which all but the first are inhomogeneous:

ẍ0 + x0 = 0, (6)
ẍ1 + x1 = −ẋ3

0, (7)
. . . . . .

ẍn + xn = −ẋ3
n−1, (8)

. . . . . .

The solution of Eq. (6) which satisfies x0(0) = 1, ẋ0(0) = 0 is

x0(t) = cos(t). (9)

To solve Eq. (11), recall that

sin3 t =
3
4

sin(t) −
1
4

sin(3t). (10)

ẍ1 + x1 = −ẋ3
0 = sin3(t), x1(0) = 0, ẋ1(0) = 0. (11)

x1(t) =
9

32
sin(t) +

1
32

sin(3t) −
3
8

t cos(t) (12)

The amplitude of oscillation of the solution Eq. (12) grows unbounded as t → ∞. The term t cos(t),
whose amplitude grows with t, is said to be a secular term. The secular term has appeared because
sin3(t) on the right of Eq. (11) contains a component, ∼ sin(t), whose frequency equals the natural
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frequency of the unperturbed oscillator, i.e. because the inhomogeneity ∼ sin(t) is itself a solution
of the homogeneous equation associated with Eq. (11): ẍ1 + x1 = 0. In general, secular terms
always appear whenever the inhomogeneous term is itself a solution of the associated homogeneous
constant-coefficient differential equation. A secular term always grows more rapidly than the
corresponding solution of the homogeneous equation by at least a factor of t.

However, the correct solution of Eq. (4), x(t), remains bounded for all t. Indeed, let’s multiply
Eq. (4) by ẋ.

ẋ ẍ + ẋ x = −ε ẋ4. (13)

Rearraging terms in the left hand side, we obtain:

ẋ ẍ + ẋ x =
1
2

d
dt

(
dx
dt

)2

+
1
2

d
dt

x2 =
d
dt



1
2

(
dx
dt

)2

+
1
2

x2

=

dE
dt
, (14)

where

E ≡
1
2

(
dx
dt

)2

+
1
2

x2 =
1
2

ẋ2 +
1
2

x2 (15)

is the mechanical energy of the oscillator. The energy Eq. (15) is always non-negative. For the
initial condition Eq. (2), E(0) = 1

2 .

On the other hand the right hand side of Eq. (13) is always non-positive. Therefore,

d
dt

E ≤ 0, (16)

i.e.
E(t) ≤ E(0) (17)

which means that that neither x(t) nor ẋ can grow unbounded, in contradiction with the re-
sult Eq. (12).

1.3 The method of averaging

To obtain an approximate analytic solution of Eq. (1), we use a powerful method called the method
of averaging. It is applicable to equations of the following general form:

d2x
dt2 + x = εF

(
x,

dx
dt

)
, (18)

where in our case

F
(
x,

dx
dt

)
= −

(
dx
dt

)3

. (19)

We seek a solution to Eq. (18) in the form:

x = a(t) cos
(
t + ψ(t)

)
, (20)
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dx
dt
= −a(t) sin

(
t + ψ(t)

)
. (21)

The motivation for this ansatz is that when ε is zero, Eq. (18) has its solution of the form Eq. (20)
with a and ψ constants. For small values of ε we expect the same form of the solution to be
approximately valid, but now a and ψ are expected to be slowly varying functions of t.

Differentiating Eq. (20) and requiring Eq. (21) to hold, we obtain the following relation:

ȧ cos
(
t + ψ(t)

)
− aψ̇ sin

(
t + ψ(t)

)
= 0. (22)

where we introduced the notation:
ȧ ≡

da
dt
, ψ̇ ≡

dψ
dt
. (23)

Differentiation of Eq. (21) and substitution the result into Eq. (18) gives

− ȧ sin
(
t + ψ

)
− aψ̇ cos

(
t + ψ

)
= εa3 sin3 (

t + ψ
)
. (24)

Solving Eqs. (22) and (24) for ȧ and ψ̇, we obtain the following system of two differential equations:

da
dt
= −εa3 sin4 (

t + ψ
)

(25)

dψ
dt
= −εa2 sin3 (

t + ψ
)

cos(t + ψ). (26)

So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small. Hence
a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations the quantities
a(t) and ψ(t) on the right hand sides of Eqs. (25) and (26) can be treated as nearly constant, and
thus these right hand sides may be replaced by their averages:

1
2π

∫ 2π

0
dφ . . . (27)

Eqs. (25) and (26) become

da
dt
= −ε

1
2π

∫ 2π

0
dφa3 sin4 (

φ
)

(28)

dψ
dt
= −ε

1
2π

∫ 2π

0
dφa2 sin3 (

φ
)

cos
(
φ
)

(29)

The right hand side of Eq. (29) is zero. The averaging in Eq. (28) can be done using the following
trigonometric identities:

sin2(φ) =
1
2

(
1 − cos(2φ)

)
,

1
2π

∫ 2π

0
dφ cos2(nφ) =

1
2π

∫ 2π

0
dφ sin2(nφ) =

1
2
, n = 1,2, . . .
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1
2π

∫ 2π

0
dφ cos(nφ) =

1
2π

∫ 2π

0
dφ sin(nφ) = 0, n = 1,2, . . .

1
2π

∫ 2π

0
dφ sin4(φ) =

1
2π

∫ 2π

0
dφ

(
1
2

(
1 − cos(2φ)

))2

=

=
1
4

1
2π

∫ 2π

0
dφ

(
1 − 2 cos(2φ) + cos2(2φ)

)
=

=
1
4

(
1 +

1
2

)
=

3
8

(30)

The averaged equations of motion are as following:

da
dt
= −ε

3
8

a3 (31)

dψ
dt
= 0 (32)

The solution of Eq. (32) is
ψ = const. (33)

We can chose the constant to be 0.

Eq. (31) can be solved by separating the variables:

da
a3 = −

3
8
εdt −→

1
a2(t)

=
3
4
εt +

1
a2(0)

−→ a(t) =
1√

3
4εt +

1
a2(0)

, (34)

where a(0) is the amplitude of oscillations at t = 0. Finally,

x(t) =
cos(t)√

3
4εt +

1
a2(0)

(35)

2 Van der Pol oscillator

The second order non-linear autonomous differential equation

d2x
dt2 + ε

(
x2 − 1

) dx
dt
+ x = 0, ε > 0 (36)

is called van der Pol equation. The parameter ε is positive and indicates the nonlinearity and the
strength of the damping. The equation models a non-conservative system in which energy is added
to and subtracted from the system, resulting in a periodic motion called a limit cycle. The sign of
the “coefficient” in the damping term in Eq. (36),

(
x2 − 1

)
changes, depending whether |x | is larger

or smaller than one, describing the inflow and outflow of the energy.

The equation was originally proposed in the late 1920-th to describe stable oscillations in electrical
circuits employing vacuum tubes.
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Figure 2: The Fitzhugh-Nagumo circuit used to
model the nerve membrane. With a cubically
nonlinear tunnel diode, I = I0 + F (V − V0),
F (V ) =

(
α
3 V 3 − βV

)
, it is described by van der

Pol equation.

I0

V0

Figure 3: I (V ) for a tunnel diode. Note the
“negative resistance”, dI/dV < 0, for V ∼ V0.

2.1 Numerical integration

Let’s write Eq. (36) as a first order system of differential equations,




dx
dt
= y,

dy
dt
= −ε

(
x2 − 1

) dx
dt
− x,

(37)

The results of numerical integration of Eqs. (37) are presented in Figs. 4–5.

Numerical integration of Eq. (37) shows that every initial condition (except x = 0, ẋ = 0) approaches
a unique periodic motion. The nature of this limit cycle is dependent on the value of ε. For small
values of ε the motion is nearly harmonic.

Numerical integration shows that the limit cycle is a closed curve enclosing the origin in the x-y
phase plane. From the fact that Eqs. (37) are invariant under the transformation x → −x, y → −y ,
we may conclude that the curve representing the limit cycle is point symmetric about the origin.

2.2 Averaging

In order to obtain information regarding the approach to the limit cycle, we use the method of
averaging. The method is applicable to equations of the following general form:

d2x
dt2 + x = −εF

(
x,

dx
dt

)
, (38)

where in our case

F
(
x,

dx
dt

)
=

(
x2 − 1

) dx
dt
. (39)
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Figure 4: Typical solution of van der Pol equation for small values of ε; top graph – x(t), bottom
graph – ẋ(t); ε = 0.1 (solid line). The approximations Eq. (71), (72) shown as dashed line.

We seek a solution to Eq. (38) in the form:

x = a(t) cos
(
t + ψ(t)

)
, (40)

dx
dt
= −a(t) sin

(
t + ψ(t)

)
. (41)
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Figure 5: Typical phase space trajectory of van der Pol equation for small values of ε.

Our motivation for this ansatz is, as in the example before, that when ε is zero, Eq. (38) has its
solution of the form Eq. (40) with a and ψ constants. For small values of ε we expect the same
form of the solution to be approximately valid, but now a and ψ are expected to be slowly varying
functions of t. Differentiating Eq. (40) and requiring Eq. (41) to hold, we obtain:

da
dt

cos
(
t + ψ(t)

)
− a

dψ
dt

sin
(
t + ψ(t)

)
= 0. (42)

Differentiating Eq. (41) and substituting the result into Eq. (38) gives

−
da
dt

sin
(
t + ψ

)
− a

dψ
dt

cos
(
t + ψ

)
= −εF

(
a(t) cos

(
t + ψ

)
,−a(t) sin

(
t + ψ

))
. (43)

Solving Eqs. (42) and (43) for
da
dt

and
dψ
dt

, we obtain:

da
dt
= εF

(
a(t) cos

(
t + ψ

)
,−a(t) sin

(
t + ψ

))
sin(t + ψ) (44)

dψ
dt
=

ε

a
F

(
a cos

(
t + ψ

)
,−a sin

(
t + ψ

)
cos(t + ψ

)
, (45)

where
F (. . .) = −a

(
a2 cos2 (

t + ψ
)
− 1

)
sin

(
t + ψ

)
. (46)

da
dt
= −εa

(
a2 cos2 (

t + ψ
)
− 1

)
sin2 (

t + ψ
)

(47)

dψ
dt
= −ε

(
a2 cos2 (

t + ψ
)
− 1

)
sin

(
t + ψ

)
cos

(
t + ψ

)
(48)
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So far our treatment has been exact.

Now we introduce the following approximation: since ε is small,
da
dt

and
dψ
dt

are also small. Hence
a(t) and ψ(t) are slowly varying functions of t. Thus over one cycle of oscillations the quantities
a(t) and ψ(t) on the right hand sides of Eqs. (47) and (48) can be treated as nearly constant, and
thus these right hand sides may be replaced by their averages:

. . . ≡ 〈 . . . 〉 ≡
1

2π

2π∫
0

. . . dφ (49)

Eqs. (47) and (48) become

da
dt
= −εa3 cos2(φ) sin2(φ) + εa sin2(φ) (50)

dψ
dt
= −εa2 cos3(φ) sin(φ) + εcos(φ) sin(φ) (51)

As shown in the Appendix,

cos3(φ) sin(φ) ≡
1

2π
I3,1 = 0, (52)

cos(φ) sin(φ) ≡
1

2π
I1,1 = 0, (53)

thus the right hand side of Eq. (51) is zero. Therefore,

dψ
dt
= 0, (54)

i.e. ψ = C, where C is an integration constant. We can chose that

ψ = 0. (55)

The averaged terms in Eq. (47) are as following:

cos2(φ) sin2(φ) ≡
1

2π
I2,2 =

1
8
, (56)

sin2(φ) ≡
1

2π
I2,0 =

1
2
, (57)

where Eq. (116) and (117) have been used.

Thus, the averaged Eq. (50) is
da
dt
=
ε

8
a (4 − a2). (58)

Eq. (58) can be solved separating variables:

da
a (2 − a) (2 + a)

=
ε

8
dt. (59)
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Decomposing the left hand side into partial fractions,

1
a(2 − a)(2 + a)

=
1
4

1
a
+

1
8

1
2 − a

−
1
8

1
2 + a

, (60)

we obtain
2

da
a
+

da
2 − a

−
da

2 + a
= ε dt, (61)

2
da
a
−

d(2 − a)
2 − a

−
d(2 + a)

2 + a
= ε dt, (62)

d log
(
a2

)
− d log |2 − a | − d log(2 + a) = εdt. (63)

Integrating both sides

log
(

a2

(a + 2) |2 − a |

)
= ε(t − t0). (64)

We can choose an integration constant t0 to be 0. Exponentiating,

a2

(a + 2) |2 − a |
= eεt , (65)

which is a transcendental equation for a(t).

Since we are primary interested in the limit cycle solution of the van der Pol equation, we do not
need the complete solution of Eq. (65) but only its limit as t → ∞.

Inverting Eq. (65), we get

(a + 2) |2 − a |
a2 = e−εt → 0 as t → ∞, (66)

which is possible if a(∞) = 2.

To find the rate of approach to the limit cycle, we substitute the solution in the form

a(t) = 2 − δ(t) (67)

into Eq. (66) and keep only the term linear in δ. We assume that the initial conditions are such that
a < 2, so that δ(t) > 0.

(a + 2) |2 − a |
a2 =

(4 + δ(t)) δ(t)
4 + 2δ(t) + δ(t)2 ≈

4δ(t)
4 + 2δ(t)

=
δ(t)

1 + 1
2δ(t)

≈ δ(t)
(
1 −

1
2
δ(t)

)
≈ δ(t). (68)

We obtain that
δ(t) = e−εt . (69)

Thus,
a(t) ≈ 2 − e−εt as t → ∞. (70)

Finally, for t ≥ ε−1,
x(t) = a(t) cos(t + ψ(t)) =

(
2 − e−εt

)
cos t, (71)

ẋ(t) = −a(t) sin(t + ψ(t)) = −
(
2 − e−εt

)
sin t (72)

are the parametric equations of the limit cycle in the phase plane.
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3 Oscillator with the slowly changing frequency

d2x
dt2 + x = −εF

(
x,

dx
dt
, εt

)
, (73)

where the new dependence is highligted in bold.

d2x
dt2 + ω

2(εt)x = 0, (74)

where
ω(εt) , 0. (75)

τ = f (t) (76)
dx
dt
=

dx
dτ

dτ
dt
=

d f
dt

dx
dτ
, (77)

d2x
dt2 =

d
dt

(
dx
dt

)
=

d
dt

(
d f
dt

dx
dτ

)
=

d2 f
dt2

dx
dτ
+

d f
dt

d
dt

(
dx
dτ

)
=

d2 f
dt2

dx
dτ
+

d f
dt

d
dτ

(
dx
dτ

)
d f
dt
=

d2 f
dt2

dx
dτ
+

(
d f
dt

)2 d2x
dτ2 (78)

Substituting Eq. (78) into Eq. (74) and introducing the notations

ẋ =
dx
dτ
, ẍ =

d2x
dτ2 , (79)(

d f
dt

)2

ẍ +
d2 f
dt2 ẋ + ω2(εt)x = 0. (80)(

d f
dt

)2

= ω2(εt) →
d f
dt
= ω(εt), (81)

τ =

∫ t
ω(εu) du, dτ = ω(εt) dt (82)

d2 f
dt2 =

dω(εt)
dt

= εω′(T ), (83)

where
T = εt. (84)

d2x
dτ2 + ε

ω′(εt)
ω2(εt)

dx
dτ
+ x = 0. (85)

Eq. (85) is in the form Eq. (73). Using the method of averaging we obtain the following equations
for a(t) and ψ(t):

da
dτ
= −ε

ω′(εt)
ω2(εt)

a sin2(τ + ψ), (86)

dψ
dτ

= −ε
ω′(εt)
ω2(εt)

a sin(τ + ψ) cos(τ + ψ). (87)
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Averaging Eq. (86), (87) we obtain:

da
dτ
= −

ε

2
ω′(εt)
ω2(εt)

a, (88)

dψ
dτ

= 0. (89)

Eq. (89) telss us that ψ = const, and we can chose

ψ = 0. (90)

Eq. (88) can be solved separating variables

da
a
= −

ε

2
ω′(εt)
ω2(εt)

dτ = −
ε

2
ω′(εt)
ω2(εt)

ω(εt) dt = −
1
2
ω′(εt)
ω(εt)

d(εt). (91)

d log(a) = −
1
2

d log(ω(εt)), (92)

log(a) = log
(

1
√
ω(εt)

)
+ C′, (93)

a =
C

√
ω(εt)

(94)

x(t) = a(t) cos(τ) =
C

√
ω(εt)

cos
(∫ t

0
ω(εt′) dt′

)
. (95)

ẋ(t) = −C
√
ω(εt) sin

(∫ t

0
ω(εt′) dt′

)
. (96)

E(t) =
1
2

ẋ2 +
1
2
ω(εt)2x2 =

C2

2
ω, (97)

E(t)
ω(εt)

= const. (98)

4 Problems

Problem 1. Find (a) the time dependence of the amplitude and (b) the frequency of the Duffing
oscillator:

ẍ + x + ε x3 = 0, (99)

where ε is a small parameter (ε � 1); x(0) = 1, ẋ(0) = 0. Compare your analytic approximation
with the numerical solution of the differential equation.
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Figure 6: Typical solution of
the Duffing equation Eq. (99),
ε = 0.2 (solid line). The ap-
proximation obtained by the
method of averaging is also
shown (dashed line).
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Problem 2. Find the time dependence of the amplitude of an oscillator with “dry” friction:

ẍ + γ sign( ẋ) + x = 0, (100)

where γ is a small parameter (γ � 1); x(0) = 1, ẋ(0) = 0,

sign(α) =



1, α > 0,
0, α = 0,
−1 α < 0.

Determine the time until the full stop.

Compare your analytic approximation with the numerical solution of the differential equation.

Figure 7: Typical solution
of the dry friction oscillator
Eq. (100) for small values
of γ; γ = 0.03 (solid line).
The approximation obtained
by the method of averaging is
also shown (dashed line).
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Problem 3. Find the solution of the following nonlinear differential equation:

ẍ + ε ẋ5 + x = 0, x(0) = x0, ẋ(0) = 0, (101)

where ε is a small positive parameter. Compare your analytic approximation with the numerical
solution of the differential equation.
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Figure 8: Typical solution of
the nonlinear friction oscilla-
tor Eq. (101) for small values
of ε ; γ = 0.03 (solid line).
The approximation obtained
by the method of averaging is
also shown (dashed line).
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Appendix A. Integrals for the method of averaging

The method of averaging requires the evaluation of integrals of the form

Ip,q =

2π∫
0

cosp x sinq x dx, (102)

where p and q are positive integers.

First, notice that the integration in Eq. (102) is over the period of the integrand, thus

2π∫
0

cosp x sinq x dx =

2π+u∫
u

cosp x sinq x dx (103)

for arbitrary u.

Ip,q is zero if at least one of p or q is odd. Indeed, consider separately the three possible cases:

1. If p is even and q is odd, i.e. if p = 2m and q = 2n + 1, then

I2m,2n+1 =

2π∫
0

cos2m(x) sin2n+1(x) dx =

π∫
−π

cos2m(x) sin2n+1(x) dx = 0 (104)

since the integrand is an odd function.

2. If both p and q are odd, i.e. p = 2m + 1 and q = 2n + 1, then

I2m+1,2n+1 =

2π∫
0

cos2m+1(x) sin2n+1(x) dx =
1
2

π∫
−π

cos2m(x) sin2n(x) sin(2x) dx = 0 (105)

since the integrand is again an odd function; here we used the identity cos(x) sin(x) =
1
2 sin(2x).
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3. If p is odd and q is even, i.e. if p = 2m + 1 and q = 2n, then, using the identities sin(x) =
cos

(
x − π

2

)
and cos(x) = − sin

(
x − π

2

)
,

I2m+1,2n =

2π∫
0

cos2m+1(x) sin2n(x) dx = −

2π∫
0

sin2m+1
(
x −

π

2

)
cos2n

(
x −

π

2

)
dx

= −

3
2 π∫

− 1
2 π

sin2m+1(u) cos2n(u) du = −

π∫
−π

sin2m+1(u) cos2n(u) du = 0 (106)

since the last integral is from an odd function.

To evaluate Ipq when both p and q are even, let’s proceed as following.

I2m,2n =

2π∫
0

(
cos2(x)

)m (
sin2(x)

)n
dx = 2

π∫
0

(
cos2(x)

)m (
1 − cos2(x)

)n
dx

= 2

π
2∫

0

(
cos2(x)

)m (
1 − cos2(x)

)n
dx + 2

π∫
π
2

(
cos2(x)

)m (
1 − cos2(x)

)n
dx. (107)

Let’s introduce the new integration variable,

u = cos2 x, 0 ≤ u ≤ 1, du = −2 cos x sin x dx. (108)

In the first integral in Eq. (108), 0 ≤ x ≤ π
2 , thus both cos(x) and sin(x) are positive, therefore

cos(x) = u
1
2 and sin(x) = (1 − u)

1
2 . So,

du = −2u
1
2 (1 − u)

1
2 dx, (109)

i.e.
dx = −

du

2u
1
2 (1 − u)

1
2

. (110)

In the second integral in Eq. (108), π
2 ≤ x ≤ π, thus cos(x) is negative and sin(x) is positive,

therefore cos(x) = −u
1
2 and sin(x) = (1 − u)

1
2 . So,

du = 2u
1
2 (1 − u)

1
2 dx, (111)

i.e.
dx =

du

2u
1
2 (1 − u)

1
2

. (112)

Substituting Eqs. (111)–(112) into Eq. (107), we obtain

I2m,2n = −

0∫
1

um− 1
2 (1 − u)n− 1

2 du +

1∫
0

um− 1
2 (1 − u)n− 1

2 du = 2

1∫
0

um+ 1
2−1(1 − u)n+ 1

2−1du. (113)
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The last integral is B
(
m + 1

2 ,n +
1
2

)
, therefore

I2m,2n = 2B
(
m +

1
2
,n +

1
2

)
=

2Γ
(
m + 1

2

)
Γ

(
m + 1

2

)
Γ(m + n + 1)

. (114)

In particular, Γ
(

1
2

)
=
√
π and Γ(1) = 1, thus

I0,0 =
2Γ2

(
1
2

)
Γ(1)

= 2π. (115)

This trivial by itself result (obviously I0,0 =
∫ 2π

0 dx = 2π) confirms the correctness of Eq. (114).

Furthermore, Γ
(
1 + 1

2

)
= 1

2Γ
(

1
2

)
= 1

2
√
π, Γ(2) = 1, Γ(3) = 2Γ(2) = 2, thus

I2,0 =
2Γ

(
1 + 1

2

)
Γ

(
1
2

)
Γ(2)

= Γ2
(

1
2

)
= π (116)

and

I2,2 =
2Γ2

(
1 + 1

2

)
Γ(3)

=
π

4
. (117)

Finally, Γ
(
2 + 1

2

)
= 3

2Γ
(

3
2

)
= 3

4
√
π, and

I4,0 =
2Γ

(
2 + 1

2

)
Γ

(
1
2

)
Γ(3)

=
3π
4
. (118)
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