
AMAT-3132, Winter 2003.

Euler's derivation of the Euler-Ma
laurin formula

1 Bernoulli numbers

In the present 
ontext Bernoulli numbers will appear as 
oeÆ
ients in the Euler-Ma
laurin

formula. They arise also, quite unexpe
tedly, in a number of other questions. See, for

example, Lab 2A in this term's AMAT-2130

http://www.math.mun.
a/ m2130/winter2003/lab2A.ps

It is well known that the fun
tion
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has �nite limit as t ! 0. Moreover, it 
an be

expanded in Ma
laurin's series
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Bernoulli numbers B

k

are, by de�nition, the values of the derivaives of the re
ipro
al fun
-

tion
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at t = 0, that is we have Ma
laurin's expansion

t

e

t

� 1

= 1�

t

2

+

t

2

12

�

t

4

720

+ : : : = 1 +

1

X

k=1

B

k

k!

(1)

with B
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= �1=2 , B
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= 1=6 , B
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= 0 , B

4

= �1=30 , et
. The Bernoulli numbers 
an be


omputed re
urrently by equating (to zero) 
oeÆ
ients at powers of t in the identity
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is the only nonzero Bernoulli number with an odd subs
ript. Bernoulli numbers with

even subs
ripts are all nonzero. Some �rst of them are
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In spite of an apparent smallness of the �rst terms of this sequen
e, the pattern is elusive;

in fa
t, B

2n

!1 as n!1 at a nearly fa
torial rate.

2 Operators D =

d

dx

and T (shift)

If f(x) is a "good" fun
tion (meaning that we 
an apply formulae of di�erential 
al
ulus we

need without reservations), then the 
orresponden
e

f(x) ! f

0

(x)


an be regarded as the operator of di�erentiation D =

d

dx

that a
ts on the fun
tion and

transforms it into the derivative. Similarly, the 
orresponden
e

f(x) ! f(x + 1)
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an be regarded as the shift operator T that a
ts on the fun
tion and transforms it into a

new fun
tion Tf(x) de�ned pointwise as Tf(x) := f(x+ 1).

The Taylor expansion
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an be interpreted as follows:
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If we asso
iate the identity operator f(x)! f(x) with number 1 (saying, for instan
e, that

f(x) is being multiplied by the 
onstant 1), then we 
an formally write the

T = 1 +
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Of 
ourse, this is not a numeri
al identity, and its rigorous treatment is by far not straight-

forward. (Mathemati
al dis
ipline that deals with su
h issues is Fun
tional Analysis.)

Anyway, having a

epted (2), we 
an do one more step and 
onsider shift by 2, whi
h is the


omposition of two unit shifts:
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(The new formula is 
onsistent with Taylor's expansion, again.) In general, shift by any

positive value s 
an be 
onsidered as operator

T

s
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3 Summation of series in terms of operator D

A

ording to Eq. (3), we 
an formally write
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Now, if D was an ordinary variable, we would have from Eq. (1)
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The terms in

P

on the right are 
onstant multiples of powers of the operator D, like in

Taylor's formula. The "
onstant term"

1

2

is simply the operator of multipli
ation by 1=2.
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The only question, from the formal point of view, is what does 1=D mean? Naturally, we

anti
ipate that it is an operator satisfying the relation

D �

1

D

= 1

where the "multipli
ation" � means 
omposition of operators, and 1 in the RHS stands for

the identity operator. Therefore, 1=D is to be an inverse operator to di�erentiation, that

is integration. So (1=D)f(x) will be an antiderivative of f(x). Sin
e there are many

antiderivatives (di�ering by an additive 
onstant), there remains some indeterminan
y.

Euler makes a distinguished 
hoi
e: he 
hoses in�nity as the formal lower limit of integration:
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f(t) dt: (6)

Substituting to (5) and applying the "operator expansion" (5) to the fun
tion f , we obtain

a

ording to (4):

f(x) + f(x+ 1) + f(x+ 2) + : : : =
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This is a pure formal Euler-Ma
laurin series. In many 
ases RHS diverges, but its trun
ation

gives a good approximation to the di�eren
e between the sum and the integral. Expli
itly,

we have
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4 The Euler-Ma
laurin formula with remainder term

As a referen
e, here is one possible exa
t form of the E-M formula, somewhat similar to

Taylor's formula with remainder in integral form. We 
an identify the whole left side as the

error term for the 
omposite trapezoidal rule.
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where �

m

(�) is a universal (independent of f and n) bounded periodi
 fun
tion with period 1.

Like in many other error estimations, expli
it expression for �

m

has little impa
t. It is in

fa
t pie
ewise-polynomial (though not a spline). In the segment [0; 1℄,

�

m

(x) = B

2m+1

(x);

where B

2m+1

(x) is the so 
alled (2m+1)-th Bernoulli polynomial, appearing as an expression

of sum of 2m-th powers of integers from 1 to x, 
f. formula (1) in AMAT-2130, Lab.2A (see

weblink at the beginning).
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