Mathematical Methods for the Physical Sciences Academic Calendar and Homework Assignments

Week	Lecture No.	Date	Chapter/Exam	Homework
1	1	Tue, Jan 22	Introduction. Course logistics. Benefits and challenges of CAS. Low entropy expressions. Differential operator. Translation (shift) operator.	
	2	Thu, Jan 24	Euler-MacLaurin summation formula. Logarithmic derivatives. A very short introduction to Mathematica: $Exp[x]$, Series[{x,0,6}].	
2	3	Tue, Jan 29	Euler-MacLaurin summation formula, II. Properties of the differential operator.	
	4	Thu, Jan 31	Ordinary differential equations I.	
3	5	Tue, Feb 5	Ordinary differential equations II. A very short introduc- tion to sympy.	HW1 due
	4	Thu, Jan 31	Ordinary differential equations III.	
4	7	Tue, Feb 12	Complex numbers and complex variables: coordinate and polar form; Euler's formula; trigonometric identities; complex roots.	
	8	Thu, Feb 14	Ch. 2B, Analytic functions; Cauchy-Riemann equations. Contour integrals in the complex plane. Gaussian integrals.	HW2 due
5	9	Tue, Feb 19	Cauchy integral theorem.	
	10	Thu, Feb 21	Singular points; residues; evaluation of integrals I.	
6	11	Tue, Feb 26	Evaluation of integrals II.	
	_	Thu, Feb 28	Midterm I	HW3 due
7	12	Tue, Mar 5	Midterm I review; Evaluation of integrals III.	
	13	Thu, Mar 7	Laplace method for solving ODEs.	
8	14	Tue, Mar 12	Laplace method for integrals; Gamma function, $\Gamma(x)$. Stirling formula.	
	15	Thu, Mar 14	Laplace method, II.	
9		Tue, Mar 19 Thu, Mar 21	Spring recess Spring recess	
10	16	Tue, Mar 26	Method of stationary phase.	HW4 due
	17	Thu, Mar 28	First order PDE. Characteristics. Hydrodynamic description of traffic	

11	18	Tue, Apr 2	First order PDE, II. Eulerian and Lagrangian description of flows.	
	19	Thu, Apr 4	First order PDE, III.	
12	20	Tue, Apr 9	Midterm II	HW5 due
	21	Thu, Apr 11	Midterm II review. Take-home project discussion.	
13	22	Tue, Apr 16	Fourier integrals. Dirac δ -finction.	
	23	Thu, Apr 18	Properties of Dirac δ -function. Partial differential equations (PDE) I: Laplace equation.	
14	24	Tue, Apr 23	PDE II: diffusion equation.	
	25	Thu, Apr 25	Fourier series. PDE III	
15	26	Tue, Apr 30	PDE IV.	
	27	Thu, May 2	Random walks, diffusion, and Levi flights.	HW6 due
16	-	Thu, May 9	FINAL EXAM, 1pm–3pm, M407	