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Abstract

This project applies the methods of computational physics to predict the internal
structure of white dwarf stars. The goal is to determine the dependence of the white
dwarf radius on its mass. Since both the radius and mass can be determined from
astronomical observations, these predictions are directly verifiable.

1 Introduction

A white dwarf represents the final evolutionary state for stars whose initial mass is
insufficient to collapse into a neutron star or black hole. After a star exhausts its hydrogen
fuel (the H→ He fusion stage), it begins the fusion of helium into carbon and oxygen
(He→ C, O). If the star lacks the necessary mass to reach the core temperatures required
for subsequent carbon and oxygen fusion, an inert core composed primarily of these
elements builds at its center. In the final stage, the star sheds its outer layers, leaving this
dense, exposed core — the resulting white dwarf.

As the material in a white dwarf no longer undergoes fusion reactions, the star is not
supported against gravitational collapse by the heat generated by fusion. It is supported
only by electron degeneracy pressure, causing the star to be extremely dense.

This notes present a theoretical description of the internal structure of white dwarfs and
determine the dependence of the radius of a white dwarf stars versus its mass. Both the
radius and the mass can be determined from the results of astronomical observations
(see Fig. 1) and thus the predictions of the theory can be verified.
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Figure 1: Observations of the white dwarf mass-radius relation [1]. M⊙ and R⊙ (in the
axes labels) are the mass and the radius of the Sun.

2 The equations of the mechanical equilibrium

If the star is in mechanical equilibrium, the gravitational force at each point inside is
balanced by the force due to the spatial variation of the pressure P . The gravitational force
acting on a unit volume of matter at a radius r is

Fgrav = −G
m(r)ρ(r)

r2 , (1)

where G is the gravitational constant, ρ(r) is the mass density of the star, and m(r) is the
mass of the star interior to the radius r:

m(r) =
∫

ρdV = 4π

r∫
0

ρ(r ′)r ′2 dr ′, (2)
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where we used the volume of spherical shell or radius r and thickness dr:

dV = 4πr2dr.

A differential relation between the mass, m(r), and the density, ρ(r), can be obtained by
differentiating the Eq. (2) with respect to r:

dm
dr

= 4πr2ρ(r). (3)

The radial component of the force per unit volume of matter due to the changing pressure
is as following:

Fr =
dP
dr

. (4)

When the star is in equilibrium, we thus have:

dP
dr

= −G
m(r)ρ(r)

r2 . (5)

The description of mechanical equilibrium is completed by specifying the equation of state,
a relation that gives the pressure, P = P (ρ), which is required to maintain the matter at a
given density, ρ. Using the identity

dP
dr

=
dP
dρ

dρ
dr

, (6)

Eq. (5) can be written as
dρ
dr

= −
(

dP
dρ

)−1
Gm(r)
r2 ρ(r). (7)

Equations (3) and (7) are two coupled first-order differential equations for ρ(r) and m(r)
that determine the structure of the star for a given equation of state. The values of the
dependent variables at r = 0 are ρ(0) = ρc, the (unknown) central density, and m(0) = 0.
Integration outward in r then gives the density and mass profiles. The radius of the star,
R, is being determined by the point at which ρ = 0. The total mass of the star is then
M = m(R). Since both R and M depend upon ρc, variation of this parameter allows to
determine the mass-radius relation for white dwarf stars R(M).

3 The equation of state

To be able to solve Equations (3) and (7), we need the equation of state for a white dwarf.
We assume that the matter consists of a single kind large nuclei (e.g. oxygen) and their
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electrons. The nuclei, being heavy, contribute nearly all of the mass but make almost
no contribution to the pressure since they hardly move at all. The electrons, however,
contribute virtually all of the pressure but essentially none of the mass. We will be
interested in densities far greater than that of ordinary matter, where the electrons are
no longer bound to individual nuclei, but rather move freely through the material. A
good model is then a free gas of electrons at zero temperature, treated with relativistic
kinematics.

The quantum mechanical theory, which also takes into account the relativistic expression
for electrons’ kinetic energy[2], gives the following result:

dP
dρ

= Ye
me c

2

Mp
γ(ρ), (8)

where Mp is the mass of the proton, me is the mass of of the electron, Ye is the number of
electrons per nucleon, c is the speed of light, and dimensionless function γ(ρ) is

γ(ρ) =

(
ρ

ρ0

)2/3

3

√
1 +

(
ρ

ρ0

)2/3
. (9)

Here

ρ0 =
Mpm

3
e c

3

3π2ℏ3Ye
. (10)

Using Eq.(8) and Eq.(7) we get the following differential equation governing the evolution
of ρ(r):

dρ
dr

= −
(

Mp

me c2Ye

)
Gm(r)
γ(ρ)r2 ρ(r). (11)

To avoid numerical difficulties in calculating the right hand side of Eq. (11) for small
values of r, notice that for sufficiently small r

m(r) ≈ 4
3
πr3ρc. (12)

Hence, for small r Eq. (11) can be written in the following form:

dρ
dr

= −4
3
π

(
Mp

me c2Ye

)
Gr
γ(ρc)

ρ2
c , (13)

which avoids diverging factor 1/r2.
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4 Scaling the Differential Equations

It is always useful to reduce equations describing a physical system to dimensionless form,
both for physical insight and for numerical convenience. To do this for the equations of
white dwarf structure, we introduce dimensionless radius, density, and mass variables:

r = R0 r̄ , ρ = ρ0 ρ̄, m = M0 m̄ (14)

where ρ0 is determined by Eq. (10); the radius and mass scales, R0 and M0 to be determined
for convenience.

Substituting Eq. (14) into Eqs. (3), (11) yields

dm̄
dr̄

=
(

4πR3
0ρ0

M0

)
r̄2 ρ̄ (15)

and
dρ̄

dr̄
= −

(
GMpM0

me c2YeR0

)
m̄ ρ̄

γ(ρ̄) r̄2 . (16)

If we now choose M0 and R0 so that the coefficients in parentheses in these two equations
are ones, we find

R0 =
me c

2Ye
4πρ0GMp

= 7.71× 106Ye m, (17)

and
M0 = 4πR3

0ρ0 = 5.66× 1030Y 2
e kg. (18)

Recall that,

ρ0 =
Mpm

3
e c

3

3π2ℏ3Ye
= 9.82× 108Y −1

e kgm−3. (19)

If we consider a white dwarf star consisting of 12C, a chemical element with 6 protons, six
neutrons, and six electrons, then Ye = 1

2 and M0 = 0.71×M⊙ and R0 = 0.006×R⊙, where
M⊙ and R⊙ are the mass and the radius of the Sun.

The dimensionless differential equations are

dm̄
dr̄

= r̄2 ρ̄, (20)

dρ̄
dr̄

= −
m̄ ρ̄

γ(ρ̄) r̄2 . (21)
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Here γ , defined by Eq. (9), is

γ(ρ̄) =
ρ̄2/3

3
√

1 + ρ̄2/3
. (22)

This pair of equations is then integrated from r̄ = 0, ρ̄ = ρ̄c, m̄ = 0 to the value of r̄ at which
ρ̄ = 0, which defines the dimensionless radius of the star R̄, and the dimensionless mass of
the star is then M̄ = m̄(R̄).

At the initial stage of numerical integration when r̄ ≪ 1, from Eq. (20),

m̄ ≈ 1
3
r̄3 ρ̄c. (23)

Thus, for small r̄ Eq. (21) can be rewritten in the following form that avoids the diverging
r̄2 factor in the denominator:

dρ̄
dr̄

= −
r̄ ρ̄2

c

3γ(ρ̄c)
. (24)

5 Results of calculations. Chandrasekhar limit.

The results of numerical integration of Eqs. (20) and (21) are presented in Fig. 2. There is
a strikingly good agreement between the theory and the observations.

The theory, in agreement with the observations, predicts that more massive white dwarfs
have smaller radii. Therefore, there is a critical mass, Mc for which the predicted radius is
zero. This limited mass is called Chandrasekhar limit. From the results presented in Fig. 2,

Mc ≈ 1.44M⊙. (25)

White dwarfs resist gravitational collapse through electron degeneracy pressure. The
Chandrasekhar limit is the mass above which electron degeneracy pressure in the star’s
core is insufficient to balance the star’s own gravitational self-attraction. Consequently, a
star with a mass greater than the limit is subject to further gravitational collapse, evolving
into a neutron star or a black hole.
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Figure 2: White dwarf mass-radius relation: comparison between observational data
(scatterplot, see also Fig. 1) and the theory (solid line). In the axis labels M⊙ and R⊙ are
the mass and the radius of the Sun.
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